Loading…

Electron Localization and Transport in SnO 2 /TiO 2 Mesoporous Thin Films: Evidence for a SnO 2 /Sn x Ti 1- x O 2 /TiO 2 Structure

A study of SnO /TiO core/shell films was undertaken to investigate the influences of shell thickness and post deposition sintering on electron localization and transport properties. Electrochemical reduction of the materials resulted in the appearance of a broad visible-near IR absorbance that provi...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2019-10, Vol.35 (39), p.12694-12703
Main Authors: James, Erica M, Bennett, Marc T, Bangle, Rachel E, Meyer, Gerald J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1466-a9f3654c90126ebe39bc2150d6f9b3f4ba70647aef782871996228c4cbda646a3
cites cdi_FETCH-LOGICAL-c1466-a9f3654c90126ebe39bc2150d6f9b3f4ba70647aef782871996228c4cbda646a3
container_end_page 12703
container_issue 39
container_start_page 12694
container_title Langmuir
container_volume 35
creator James, Erica M
Bennett, Marc T
Bangle, Rachel E
Meyer, Gerald J
description A study of SnO /TiO core/shell films was undertaken to investigate the influences of shell thickness and post deposition sintering on electron localization and transport properties. Electrochemical reduction of the materials resulted in the appearance of a broad visible-near IR absorbance that provided insights into the electronic state(s) within the core/shell structures. As the shell thickness was increased from 0.5 to 5 nm, evidence for the presence of a Sn Ti O interfacial state emerged that was physically located between the core and the shell. The lifetime of photoinjected electrons increased with the shell thickness. Electron transport occurred through the SnO core; however, when materials with shell thicknesses ≥2 nm were annealed at 450 °C, a new electron transport pathway through the shell was evident. The data indicate that these materials are best described as SnO /Sn Ti O /TiO where electrons preferentially localize in a Sn Ti O interfacial state and transport through SnO and annealed TiO (if present). The implications of these results for applications in solar energy conversion are discussed.
doi_str_mv 10.1021/acs.langmuir.9b02216
format article
fullrecord <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1767622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31433656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1466-a9f3654c90126ebe39bc2150d6f9b3f4ba70647aef782871996228c4cbda646a3</originalsourceid><addsrcrecordid>eNpNkE1LwzAYx4Mobk6_gUjw3pm3JYs3GZsKkx1WzyVNUxdpk5G0oh795GZsE09_Hv4vPPwAuMZojBHBd0rHcaPcW9vbMJYlIgTzEzDEE4KyyZSIUzBEgtFMME4H4CLGd4SQpEyegwHFjFI-4UPwM2-M7oJ3cOm1auy36mw6lKtgHpSLWx86aB1cuxUk8C63O3kx0SfD9xHmm2QubNPGezj_sJVx2sDaB6iOlbWDnzC3EGdJ_42su9Drrg_mEpzVqonm6qAj8LqY57OnbLl6fJ49LDONGeeZknV6mWmJMOGmNFSWmuAJqngtS1qzUgnEmVCmFlMyFVhKTshUM11WijOu6Ajc7nd97GwRte2M3mjvXAJQYMFFyqcQ24d08DEGUxfbYFsVvgqMih33InEvjtyLA_dUu9nXtn3ZmuqvdARNfwHXEn5h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron Localization and Transport in SnO 2 /TiO 2 Mesoporous Thin Films: Evidence for a SnO 2 /Sn x Ti 1- x O 2 /TiO 2 Structure</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>James, Erica M ; Bennett, Marc T ; Bangle, Rachel E ; Meyer, Gerald J</creator><creatorcontrib>James, Erica M ; Bennett, Marc T ; Bangle, Rachel E ; Meyer, Gerald J ; Univ. of North Carolina, Chapel Hill, NC (United States) ; Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</creatorcontrib><description>A study of SnO /TiO core/shell films was undertaken to investigate the influences of shell thickness and post deposition sintering on electron localization and transport properties. Electrochemical reduction of the materials resulted in the appearance of a broad visible-near IR absorbance that provided insights into the electronic state(s) within the core/shell structures. As the shell thickness was increased from 0.5 to 5 nm, evidence for the presence of a Sn Ti O interfacial state emerged that was physically located between the core and the shell. The lifetime of photoinjected electrons increased with the shell thickness. Electron transport occurred through the SnO core; however, when materials with shell thicknesses ≥2 nm were annealed at 450 °C, a new electron transport pathway through the shell was evident. The data indicate that these materials are best described as SnO /Sn Ti O /TiO where electrons preferentially localize in a Sn Ti O interfacial state and transport through SnO and annealed TiO (if present). The implications of these results for applications in solar energy conversion are discussed.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.9b02216</identifier><identifier>PMID: 31433656</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalysis (homogeneous), catalysis (heterogeneous), electrocatalysis, solar (fuels), photosynthesis (natural and artificial), defects, charge transport, materials and chemistry by design, mesostructured materials, synthesis (novel materials), synthesis (self-assembly)</subject><ispartof>Langmuir, 2019-10, Vol.35 (39), p.12694-12703</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1466-a9f3654c90126ebe39bc2150d6f9b3f4ba70647aef782871996228c4cbda646a3</citedby><cites>FETCH-LOGICAL-c1466-a9f3654c90126ebe39bc2150d6f9b3f4ba70647aef782871996228c4cbda646a3</cites><orcidid>0000-0002-1449-0923 ; 0000-0002-7491-0694 ; 0000-0002-4227-6393 ; 0000-0001-8521-702X ; 0000000274910694 ; 0000000214490923 ; 000000018521702X ; 0000000242276393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31433656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1767622$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>James, Erica M</creatorcontrib><creatorcontrib>Bennett, Marc T</creatorcontrib><creatorcontrib>Bangle, Rachel E</creatorcontrib><creatorcontrib>Meyer, Gerald J</creatorcontrib><creatorcontrib>Univ. of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</creatorcontrib><title>Electron Localization and Transport in SnO 2 /TiO 2 Mesoporous Thin Films: Evidence for a SnO 2 /Sn x Ti 1- x O 2 /TiO 2 Structure</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>A study of SnO /TiO core/shell films was undertaken to investigate the influences of shell thickness and post deposition sintering on electron localization and transport properties. Electrochemical reduction of the materials resulted in the appearance of a broad visible-near IR absorbance that provided insights into the electronic state(s) within the core/shell structures. As the shell thickness was increased from 0.5 to 5 nm, evidence for the presence of a Sn Ti O interfacial state emerged that was physically located between the core and the shell. The lifetime of photoinjected electrons increased with the shell thickness. Electron transport occurred through the SnO core; however, when materials with shell thicknesses ≥2 nm were annealed at 450 °C, a new electron transport pathway through the shell was evident. The data indicate that these materials are best described as SnO /Sn Ti O /TiO where electrons preferentially localize in a Sn Ti O interfacial state and transport through SnO and annealed TiO (if present). The implications of these results for applications in solar energy conversion are discussed.</description><subject>catalysis (homogeneous), catalysis (heterogeneous), electrocatalysis, solar (fuels), photosynthesis (natural and artificial), defects, charge transport, materials and chemistry by design, mesostructured materials, synthesis (novel materials), synthesis (self-assembly)</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LwzAYx4Mobk6_gUjw3pm3JYs3GZsKkx1WzyVNUxdpk5G0oh795GZsE09_Hv4vPPwAuMZojBHBd0rHcaPcW9vbMJYlIgTzEzDEE4KyyZSIUzBEgtFMME4H4CLGd4SQpEyegwHFjFI-4UPwM2-M7oJ3cOm1auy36mw6lKtgHpSLWx86aB1cuxUk8C63O3kx0SfD9xHmm2QubNPGezj_sJVx2sDaB6iOlbWDnzC3EGdJ_42su9Drrg_mEpzVqonm6qAj8LqY57OnbLl6fJ49LDONGeeZknV6mWmJMOGmNFSWmuAJqngtS1qzUgnEmVCmFlMyFVhKTshUM11WijOu6Ajc7nd97GwRte2M3mjvXAJQYMFFyqcQ24d08DEGUxfbYFsVvgqMih33InEvjtyLA_dUu9nXtn3ZmuqvdARNfwHXEn5h</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>James, Erica M</creator><creator>Bennett, Marc T</creator><creator>Bangle, Rachel E</creator><creator>Meyer, Gerald J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1449-0923</orcidid><orcidid>https://orcid.org/0000-0002-7491-0694</orcidid><orcidid>https://orcid.org/0000-0002-4227-6393</orcidid><orcidid>https://orcid.org/0000-0001-8521-702X</orcidid><orcidid>https://orcid.org/0000000274910694</orcidid><orcidid>https://orcid.org/0000000214490923</orcidid><orcidid>https://orcid.org/000000018521702X</orcidid><orcidid>https://orcid.org/0000000242276393</orcidid></search><sort><creationdate>20191001</creationdate><title>Electron Localization and Transport in SnO 2 /TiO 2 Mesoporous Thin Films: Evidence for a SnO 2 /Sn x Ti 1- x O 2 /TiO 2 Structure</title><author>James, Erica M ; Bennett, Marc T ; Bangle, Rachel E ; Meyer, Gerald J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1466-a9f3654c90126ebe39bc2150d6f9b3f4ba70647aef782871996228c4cbda646a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>catalysis (homogeneous), catalysis (heterogeneous), electrocatalysis, solar (fuels), photosynthesis (natural and artificial), defects, charge transport, materials and chemistry by design, mesostructured materials, synthesis (novel materials), synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>James, Erica M</creatorcontrib><creatorcontrib>Bennett, Marc T</creatorcontrib><creatorcontrib>Bangle, Rachel E</creatorcontrib><creatorcontrib>Meyer, Gerald J</creatorcontrib><creatorcontrib>Univ. of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>James, Erica M</au><au>Bennett, Marc T</au><au>Bangle, Rachel E</au><au>Meyer, Gerald J</au><aucorp>Univ. of North Carolina, Chapel Hill, NC (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Localization and Transport in SnO 2 /TiO 2 Mesoporous Thin Films: Evidence for a SnO 2 /Sn x Ti 1- x O 2 /TiO 2 Structure</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>35</volume><issue>39</issue><spage>12694</spage><epage>12703</epage><pages>12694-12703</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>A study of SnO /TiO core/shell films was undertaken to investigate the influences of shell thickness and post deposition sintering on electron localization and transport properties. Electrochemical reduction of the materials resulted in the appearance of a broad visible-near IR absorbance that provided insights into the electronic state(s) within the core/shell structures. As the shell thickness was increased from 0.5 to 5 nm, evidence for the presence of a Sn Ti O interfacial state emerged that was physically located between the core and the shell. The lifetime of photoinjected electrons increased with the shell thickness. Electron transport occurred through the SnO core; however, when materials with shell thicknesses ≥2 nm were annealed at 450 °C, a new electron transport pathway through the shell was evident. The data indicate that these materials are best described as SnO /Sn Ti O /TiO where electrons preferentially localize in a Sn Ti O interfacial state and transport through SnO and annealed TiO (if present). The implications of these results for applications in solar energy conversion are discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31433656</pmid><doi>10.1021/acs.langmuir.9b02216</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1449-0923</orcidid><orcidid>https://orcid.org/0000-0002-7491-0694</orcidid><orcidid>https://orcid.org/0000-0002-4227-6393</orcidid><orcidid>https://orcid.org/0000-0001-8521-702X</orcidid><orcidid>https://orcid.org/0000000274910694</orcidid><orcidid>https://orcid.org/0000000214490923</orcidid><orcidid>https://orcid.org/000000018521702X</orcidid><orcidid>https://orcid.org/0000000242276393</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2019-10, Vol.35 (39), p.12694-12703
issn 0743-7463
1520-5827
language eng
recordid cdi_osti_scitechconnect_1767622
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects catalysis (homogeneous), catalysis (heterogeneous), electrocatalysis, solar (fuels), photosynthesis (natural and artificial), defects, charge transport, materials and chemistry by design, mesostructured materials, synthesis (novel materials), synthesis (self-assembly)
title Electron Localization and Transport in SnO 2 /TiO 2 Mesoporous Thin Films: Evidence for a SnO 2 /Sn x Ti 1- x O 2 /TiO 2 Structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Localization%20and%20Transport%20in%20SnO%202%20/TiO%202%20Mesoporous%20Thin%20Films:%20Evidence%20for%20a%20SnO%202%20/Sn%20x%20Ti%201-%20x%20O%202%20/TiO%202%20Structure&rft.jtitle=Langmuir&rft.au=James,%20Erica%20M&rft.aucorp=Univ.%20of%20North%20Carolina,%20Chapel%20Hill,%20NC%20(United%20States)&rft.date=2019-10-01&rft.volume=35&rft.issue=39&rft.spage=12694&rft.epage=12703&rft.pages=12694-12703&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.9b02216&rft_dat=%3Cpubmed_osti_%3E31433656%3C/pubmed_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1466-a9f3654c90126ebe39bc2150d6f9b3f4ba70647aef782871996228c4cbda646a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31433656&rfr_iscdi=true