Loading…

Direct coherent switching with decay of mixing for intersystem crossing dynamics of thioformaldehyde: The effect of decoherence

We evaluate the effect of electronic decoherence on intersystem crossing in the photodynamics of thioformaldehyde. First, we show that the state-averaged complete-active-space self-consistent field electronic structure calculations with a properly chosen active space of 12 active electrons in 10 act...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2021-03, Vol.154 (9), p.094310-094310
Main Authors: Zhang, Linyao, Shu, Yinan, Sun, Shaozeng, Truhlar, Donald G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We evaluate the effect of electronic decoherence on intersystem crossing in the photodynamics of thioformaldehyde. First, we show that the state-averaged complete-active-space self-consistent field electronic structure calculations with a properly chosen active space of 12 active electrons in 10 active orbitals can predict the potential energy surfaces and the singlet–triplet spin–orbit couplings quite well for CH2S, and we use this method for direct dynamics by coherent switching with decay of mixing (CSDM). We obtain similar dynamical results with CSDM or by adding energy-based decoherence to trajectory surface hopping, with the population of triplet states tending to a small steady-state value over 500 fs. Without decoherence, the state populations calculated by the conventional trajectory surface hopping method or the semiclassical Ehrenfest method gradually increase. This difference shows that decoherence changes the nature of the results not just quantitatively but qualitatively.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0037878