Loading…
Blinking statistics and molecular counting in direct stochastic reconstruction microscopy (dSTORM)
Abstract Motivation Many recent advancements in single-molecule localization microscopy exploit the stochastic photoswitching of fluorophores to reveal complex cellular structures beyond the classical diffraction limit. However, this same stochasticity makes counting the number of molecules to high...
Saved in:
Published in: | Bioinformatics (Oxford, England) England), 2021-09, Vol.37 (17), p.2730-2737 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Motivation
Many recent advancements in single-molecule localization microscopy exploit the stochastic photoswitching of fluorophores to reveal complex cellular structures beyond the classical diffraction limit. However, this same stochasticity makes counting the number of molecules to high precision extremely challenging, preventing key insight into the cellular structures and processes under observation.
Results
Modelling the photoswitching behaviour of a fluorophore as an unobserved continuous time Markov process transitioning between a single fluorescent and multiple dark states, and fully mitigating for missed blinks and false positives, we present a method for computing the exact probability distribution for the number of observed localizations from a single photoswitching fluorophore. This is then extended to provide the probability distribution for the number of localizations in a direct stochastic optical reconstruction microscopy experiment involving an arbitrary number of molecules. We demonstrate that when training data are available to estimate photoswitching rates, the unknown number of molecules can be accurately recovered from the posterior mode of the number of molecules given the number of localizations. Finally, we demonstrate the method on experimental data by quantifying the number of adapter protein linker for activation of T cells on the cell surface of the T-cell immunological synapse.
Availability and implementation
Software and data available at https://github.com/lp1611/mol_count_dstorm.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1367-4811 |
DOI: | 10.1093/bioinformatics/btab136 |