Loading…

Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6

Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe­(III) oxides. Here, we investigated the primary driving factor(...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2020-08, Vol.54 (16), p.10128-10140
Main Authors: Dong, Yiran, Sanford, Robert A, Boyanov, Maxim I, Flynn, Theodore M, O’Loughlin, Edward J, Kemner, Kenneth M, George, Samantha, Fouke, Kaitlyn E, Li, Shuyi, Huang, Dongmei, Li, Shuzhen, Fouke, Bruce W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663
cites cdi_FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663
container_end_page 10140
container_issue 16
container_start_page 10128
container_title Environmental science & technology
container_volume 54
creator Dong, Yiran
Sanford, Robert A
Boyanov, Maxim I
Flynn, Theodore M
O’Loughlin, Edward J
Kemner, Kenneth M
George, Samantha
Fouke, Kaitlyn E
Li, Shuyi
Huang, Dongmei
Li, Shuzhen
Fouke, Bruce W
description Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe­(III) oxides. Here, we investigated the primary driving factor(s) that mediate secondary iron mineral formation over a broad range of environmental conditions using a single dissimilatory iron reducer, Orenia metallireducens strain Z6. A total of 17 distinct geochemical conditions were tested with differing pH (6.5–8.5), temperature (22–50 °C), salinity (2–20% NaCl), anions (phosphate and sulfate), electron shuttle (anthraquinone-2,6-disulfonate), and Fe­(III) oxide mineralogy (ferrihydrite, lepidocrocite, goethite, hematite, and magnetite). The observed rates and extent of iron reduction differed significantly with k int between 0.186 and 1.702 mmol L–1 day–1 and Fe­(II) production ranging from 6.3% to 83.7% of the initial Fe­(III). Using X-ray absorption and scattering techniques (EXAFS and XRD), we identified and assessed the relationship between secondary minerals and the specific environmental conditions. It was inferred that the observed bifurcation of the mineralization pathways may be mediated by differing extents of Fe­(II) sorption on the remaining Fe­(III) minerals. These results expand our understanding of the controls on biomineralization during microbial iron reduction and aid the development of practical applications.
doi_str_mv 10.1021/acs.est.0c03853
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1774368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444673917</sourcerecordid><originalsourceid>FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663</originalsourceid><addsrcrecordid>eNp1kUtr3DAUhUVJoJNJ192KZlMonuhhyfYyGfKCQKBpoXQjZPkqUbClVJID6e_oD66cCVkUutHV4zvn6nIQ-kjJhhJGj7VJG0h5QwzhreDv0IoKRirRCrqHVoRQXnVc_niPDlJ6IIQwTtoV-rMNPscwJhw8vopl-QrDbLIrO-0HfOrC5DxEPbrf-uU2PEHEpzHoAZ_5J1ckE_isR1ycBrcgCeuEb-e7u_IdGHD_jPM94HMXJ2fmDAnfRPBO4wmKbHRxaQhFdZujdh7_lIdo3-oxwYfXukbfz8--bS-r65uLq-3JdaW5FLmyg7A91bKnXdsJ0cu-bjsje8ssa8QwiK6cWmMZUFYqtcQ2nNCGAyGNkZKv0aedb0jZqWRcBnNvgvdgsqJNU3PZFujzDnqM4ddcRlKTSwbGUXsIc1KsZpK2gjQLevQP-hDm6MsIhapr2fCudF-j4x1lYkgpglWP0U06PitK1BKlKlGqRf0aZVF82SmWhzfL_9F_Ac8to1k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444673917</pqid></control><display><type>article</type><title>Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Dong, Yiran ; Sanford, Robert A ; Boyanov, Maxim I ; Flynn, Theodore M ; O’Loughlin, Edward J ; Kemner, Kenneth M ; George, Samantha ; Fouke, Kaitlyn E ; Li, Shuyi ; Huang, Dongmei ; Li, Shuzhen ; Fouke, Bruce W</creator><creatorcontrib>Dong, Yiran ; Sanford, Robert A ; Boyanov, Maxim I ; Flynn, Theodore M ; O’Loughlin, Edward J ; Kemner, Kenneth M ; George, Samantha ; Fouke, Kaitlyn E ; Li, Shuyi ; Huang, Dongmei ; Li, Shuzhen ; Fouke, Bruce W ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe­(III) oxides. Here, we investigated the primary driving factor(s) that mediate secondary iron mineral formation over a broad range of environmental conditions using a single dissimilatory iron reducer, Orenia metallireducens strain Z6. A total of 17 distinct geochemical conditions were tested with differing pH (6.5–8.5), temperature (22–50 °C), salinity (2–20% NaCl), anions (phosphate and sulfate), electron shuttle (anthraquinone-2,6-disulfonate), and Fe­(III) oxide mineralogy (ferrihydrite, lepidocrocite, goethite, hematite, and magnetite). The observed rates and extent of iron reduction differed significantly with k int between 0.186 and 1.702 mmol L–1 day–1 and Fe­(II) production ranging from 6.3% to 83.7% of the initial Fe­(III). Using X-ray absorption and scattering techniques (EXAFS and XRD), we identified and assessed the relationship between secondary minerals and the specific environmental conditions. It was inferred that the observed bifurcation of the mineralization pathways may be mediated by differing extents of Fe­(II) sorption on the remaining Fe­(III) minerals. These results expand our understanding of the controls on biomineralization during microbial iron reduction and aid the development of practical applications.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c03853</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Anions ; Anthraquinone ; Anthraquinones ; Bifurcations ; Contaminants in Aquatic and Terrestrial Environments ; Environmental conditions ; ENVIRONMENTAL SCIENCES ; Geochemistry ; Goethite ; Hematite ; Iron ; Magnetite ; Microorganisms ; Mineralization ; Mineralogy ; Minerals ; phosphates ; redox reactions ; Sodium chloride ; Sulfates ; X ray absorption</subject><ispartof>Environmental science &amp; technology, 2020-08, Vol.54 (16), p.10128-10140</ispartof><rights>Copyright American Chemical Society Aug 18, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663</citedby><cites>FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663</cites><orcidid>0000-0003-1607-9529 ; 0000-0001-8758-5248 ; 0000-0002-1838-8942 ; 0000000316079529 ; 0000000187585248 ; 0000000218388942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1774368$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Yiran</creatorcontrib><creatorcontrib>Sanford, Robert A</creatorcontrib><creatorcontrib>Boyanov, Maxim I</creatorcontrib><creatorcontrib>Flynn, Theodore M</creatorcontrib><creatorcontrib>O’Loughlin, Edward J</creatorcontrib><creatorcontrib>Kemner, Kenneth M</creatorcontrib><creatorcontrib>George, Samantha</creatorcontrib><creatorcontrib>Fouke, Kaitlyn E</creatorcontrib><creatorcontrib>Li, Shuyi</creatorcontrib><creatorcontrib>Huang, Dongmei</creatorcontrib><creatorcontrib>Li, Shuzhen</creatorcontrib><creatorcontrib>Fouke, Bruce W</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe­(III) oxides. Here, we investigated the primary driving factor(s) that mediate secondary iron mineral formation over a broad range of environmental conditions using a single dissimilatory iron reducer, Orenia metallireducens strain Z6. A total of 17 distinct geochemical conditions were tested with differing pH (6.5–8.5), temperature (22–50 °C), salinity (2–20% NaCl), anions (phosphate and sulfate), electron shuttle (anthraquinone-2,6-disulfonate), and Fe­(III) oxide mineralogy (ferrihydrite, lepidocrocite, goethite, hematite, and magnetite). The observed rates and extent of iron reduction differed significantly with k int between 0.186 and 1.702 mmol L–1 day–1 and Fe­(II) production ranging from 6.3% to 83.7% of the initial Fe­(III). Using X-ray absorption and scattering techniques (EXAFS and XRD), we identified and assessed the relationship between secondary minerals and the specific environmental conditions. It was inferred that the observed bifurcation of the mineralization pathways may be mediated by differing extents of Fe­(II) sorption on the remaining Fe­(III) minerals. These results expand our understanding of the controls on biomineralization during microbial iron reduction and aid the development of practical applications.</description><subject>Anions</subject><subject>Anthraquinone</subject><subject>Anthraquinones</subject><subject>Bifurcations</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Environmental conditions</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Geochemistry</subject><subject>Goethite</subject><subject>Hematite</subject><subject>Iron</subject><subject>Magnetite</subject><subject>Microorganisms</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>phosphates</subject><subject>redox reactions</subject><subject>Sodium chloride</subject><subject>Sulfates</subject><subject>X ray absorption</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUtr3DAUhUVJoJNJ192KZlMonuhhyfYyGfKCQKBpoXQjZPkqUbClVJID6e_oD66cCVkUutHV4zvn6nIQ-kjJhhJGj7VJG0h5QwzhreDv0IoKRirRCrqHVoRQXnVc_niPDlJ6IIQwTtoV-rMNPscwJhw8vopl-QrDbLIrO-0HfOrC5DxEPbrf-uU2PEHEpzHoAZ_5J1ckE_isR1ycBrcgCeuEb-e7u_IdGHD_jPM94HMXJ2fmDAnfRPBO4wmKbHRxaQhFdZujdh7_lIdo3-oxwYfXukbfz8--bS-r65uLq-3JdaW5FLmyg7A91bKnXdsJ0cu-bjsje8ssa8QwiK6cWmMZUFYqtcQ2nNCGAyGNkZKv0aedb0jZqWRcBnNvgvdgsqJNU3PZFujzDnqM4ddcRlKTSwbGUXsIc1KsZpK2gjQLevQP-hDm6MsIhapr2fCudF-j4x1lYkgpglWP0U06PitK1BKlKlGqRf0aZVF82SmWhzfL_9F_Ac8to1k</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Dong, Yiran</creator><creator>Sanford, Robert A</creator><creator>Boyanov, Maxim I</creator><creator>Flynn, Theodore M</creator><creator>O’Loughlin, Edward J</creator><creator>Kemner, Kenneth M</creator><creator>George, Samantha</creator><creator>Fouke, Kaitlyn E</creator><creator>Li, Shuyi</creator><creator>Huang, Dongmei</creator><creator>Li, Shuzhen</creator><creator>Fouke, Bruce W</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1607-9529</orcidid><orcidid>https://orcid.org/0000-0001-8758-5248</orcidid><orcidid>https://orcid.org/0000-0002-1838-8942</orcidid><orcidid>https://orcid.org/0000000316079529</orcidid><orcidid>https://orcid.org/0000000187585248</orcidid><orcidid>https://orcid.org/0000000218388942</orcidid></search><sort><creationdate>20200818</creationdate><title>Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6</title><author>Dong, Yiran ; Sanford, Robert A ; Boyanov, Maxim I ; Flynn, Theodore M ; O’Loughlin, Edward J ; Kemner, Kenneth M ; George, Samantha ; Fouke, Kaitlyn E ; Li, Shuyi ; Huang, Dongmei ; Li, Shuzhen ; Fouke, Bruce W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anions</topic><topic>Anthraquinone</topic><topic>Anthraquinones</topic><topic>Bifurcations</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Environmental conditions</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Geochemistry</topic><topic>Goethite</topic><topic>Hematite</topic><topic>Iron</topic><topic>Magnetite</topic><topic>Microorganisms</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>phosphates</topic><topic>redox reactions</topic><topic>Sodium chloride</topic><topic>Sulfates</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yiran</creatorcontrib><creatorcontrib>Sanford, Robert A</creatorcontrib><creatorcontrib>Boyanov, Maxim I</creatorcontrib><creatorcontrib>Flynn, Theodore M</creatorcontrib><creatorcontrib>O’Loughlin, Edward J</creatorcontrib><creatorcontrib>Kemner, Kenneth M</creatorcontrib><creatorcontrib>George, Samantha</creatorcontrib><creatorcontrib>Fouke, Kaitlyn E</creatorcontrib><creatorcontrib>Li, Shuyi</creatorcontrib><creatorcontrib>Huang, Dongmei</creatorcontrib><creatorcontrib>Li, Shuzhen</creatorcontrib><creatorcontrib>Fouke, Bruce W</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yiran</au><au>Sanford, Robert A</au><au>Boyanov, Maxim I</au><au>Flynn, Theodore M</au><au>O’Loughlin, Edward J</au><au>Kemner, Kenneth M</au><au>George, Samantha</au><au>Fouke, Kaitlyn E</au><au>Li, Shuyi</au><au>Huang, Dongmei</au><au>Li, Shuzhen</au><au>Fouke, Bruce W</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-08-18</date><risdate>2020</risdate><volume>54</volume><issue>16</issue><spage>10128</spage><epage>10140</epage><pages>10128-10140</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe­(III) oxides. Here, we investigated the primary driving factor(s) that mediate secondary iron mineral formation over a broad range of environmental conditions using a single dissimilatory iron reducer, Orenia metallireducens strain Z6. A total of 17 distinct geochemical conditions were tested with differing pH (6.5–8.5), temperature (22–50 °C), salinity (2–20% NaCl), anions (phosphate and sulfate), electron shuttle (anthraquinone-2,6-disulfonate), and Fe­(III) oxide mineralogy (ferrihydrite, lepidocrocite, goethite, hematite, and magnetite). The observed rates and extent of iron reduction differed significantly with k int between 0.186 and 1.702 mmol L–1 day–1 and Fe­(II) production ranging from 6.3% to 83.7% of the initial Fe­(III). Using X-ray absorption and scattering techniques (EXAFS and XRD), we identified and assessed the relationship between secondary minerals and the specific environmental conditions. It was inferred that the observed bifurcation of the mineralization pathways may be mediated by differing extents of Fe­(II) sorption on the remaining Fe­(III) minerals. These results expand our understanding of the controls on biomineralization during microbial iron reduction and aid the development of practical applications.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.0c03853</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1607-9529</orcidid><orcidid>https://orcid.org/0000-0001-8758-5248</orcidid><orcidid>https://orcid.org/0000-0002-1838-8942</orcidid><orcidid>https://orcid.org/0000000316079529</orcidid><orcidid>https://orcid.org/0000000187585248</orcidid><orcidid>https://orcid.org/0000000218388942</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2020-08, Vol.54 (16), p.10128-10140
issn 0013-936X
1520-5851
language eng
recordid cdi_osti_scitechconnect_1774368
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Anions
Anthraquinone
Anthraquinones
Bifurcations
Contaminants in Aquatic and Terrestrial Environments
Environmental conditions
ENVIRONMENTAL SCIENCES
Geochemistry
Goethite
Hematite
Iron
Magnetite
Microorganisms
Mineralization
Mineralogy
Minerals
phosphates
redox reactions
Sodium chloride
Sulfates
X ray absorption
title Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controls%20on%20Iron%20Reduction%20and%20Biomineralization%20over%20Broad%20Environmental%20Conditions%20as%20Suggested%20by%20the%20Firmicutes%20Orenia%20metallireducens%20Strain%20Z6&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Dong,%20Yiran&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-08-18&rft.volume=54&rft.issue=16&rft.spage=10128&rft.epage=10140&rft.pages=10128-10140&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c03853&rft_dat=%3Cproquest_osti_%3E2444673917%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444673917&rft_id=info:pmid/&rfr_iscdi=true