Loading…
Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6
Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe(III) oxides. Here, we investigated the primary driving factor(...
Saved in:
Published in: | Environmental science & technology 2020-08, Vol.54 (16), p.10128-10140 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663 |
---|---|
cites | cdi_FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663 |
container_end_page | 10140 |
container_issue | 16 |
container_start_page | 10128 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Dong, Yiran Sanford, Robert A Boyanov, Maxim I Flynn, Theodore M O’Loughlin, Edward J Kemner, Kenneth M George, Samantha Fouke, Kaitlyn E Li, Shuyi Huang, Dongmei Li, Shuzhen Fouke, Bruce W |
description | Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe(III) oxides. Here, we investigated the primary driving factor(s) that mediate secondary iron mineral formation over a broad range of environmental conditions using a single dissimilatory iron reducer, Orenia metallireducens strain Z6. A total of 17 distinct geochemical conditions were tested with differing pH (6.5–8.5), temperature (22–50 °C), salinity (2–20% NaCl), anions (phosphate and sulfate), electron shuttle (anthraquinone-2,6-disulfonate), and Fe(III) oxide mineralogy (ferrihydrite, lepidocrocite, goethite, hematite, and magnetite). The observed rates and extent of iron reduction differed significantly with k int between 0.186 and 1.702 mmol L–1 day–1 and Fe(II) production ranging from 6.3% to 83.7% of the initial Fe(III). Using X-ray absorption and scattering techniques (EXAFS and XRD), we identified and assessed the relationship between secondary minerals and the specific environmental conditions. It was inferred that the observed bifurcation of the mineralization pathways may be mediated by differing extents of Fe(II) sorption on the remaining Fe(III) minerals. These results expand our understanding of the controls on biomineralization during microbial iron reduction and aid the development of practical applications. |
doi_str_mv | 10.1021/acs.est.0c03853 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1774368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444673917</sourcerecordid><originalsourceid>FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663</originalsourceid><addsrcrecordid>eNp1kUtr3DAUhUVJoJNJ192KZlMonuhhyfYyGfKCQKBpoXQjZPkqUbClVJID6e_oD66cCVkUutHV4zvn6nIQ-kjJhhJGj7VJG0h5QwzhreDv0IoKRirRCrqHVoRQXnVc_niPDlJ6IIQwTtoV-rMNPscwJhw8vopl-QrDbLIrO-0HfOrC5DxEPbrf-uU2PEHEpzHoAZ_5J1ckE_isR1ycBrcgCeuEb-e7u_IdGHD_jPM94HMXJ2fmDAnfRPBO4wmKbHRxaQhFdZujdh7_lIdo3-oxwYfXukbfz8--bS-r65uLq-3JdaW5FLmyg7A91bKnXdsJ0cu-bjsje8ssa8QwiK6cWmMZUFYqtcQ2nNCGAyGNkZKv0aedb0jZqWRcBnNvgvdgsqJNU3PZFujzDnqM4ddcRlKTSwbGUXsIc1KsZpK2gjQLevQP-hDm6MsIhapr2fCudF-j4x1lYkgpglWP0U06PitK1BKlKlGqRf0aZVF82SmWhzfL_9F_Ac8to1k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444673917</pqid></control><display><type>article</type><title>Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Dong, Yiran ; Sanford, Robert A ; Boyanov, Maxim I ; Flynn, Theodore M ; O’Loughlin, Edward J ; Kemner, Kenneth M ; George, Samantha ; Fouke, Kaitlyn E ; Li, Shuyi ; Huang, Dongmei ; Li, Shuzhen ; Fouke, Bruce W</creator><creatorcontrib>Dong, Yiran ; Sanford, Robert A ; Boyanov, Maxim I ; Flynn, Theodore M ; O’Loughlin, Edward J ; Kemner, Kenneth M ; George, Samantha ; Fouke, Kaitlyn E ; Li, Shuyi ; Huang, Dongmei ; Li, Shuzhen ; Fouke, Bruce W ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe(III) oxides. Here, we investigated the primary driving factor(s) that mediate secondary iron mineral formation over a broad range of environmental conditions using a single dissimilatory iron reducer, Orenia metallireducens strain Z6. A total of 17 distinct geochemical conditions were tested with differing pH (6.5–8.5), temperature (22–50 °C), salinity (2–20% NaCl), anions (phosphate and sulfate), electron shuttle (anthraquinone-2,6-disulfonate), and Fe(III) oxide mineralogy (ferrihydrite, lepidocrocite, goethite, hematite, and magnetite). The observed rates and extent of iron reduction differed significantly with k int between 0.186 and 1.702 mmol L–1 day–1 and Fe(II) production ranging from 6.3% to 83.7% of the initial Fe(III). Using X-ray absorption and scattering techniques (EXAFS and XRD), we identified and assessed the relationship between secondary minerals and the specific environmental conditions. It was inferred that the observed bifurcation of the mineralization pathways may be mediated by differing extents of Fe(II) sorption on the remaining Fe(III) minerals. These results expand our understanding of the controls on biomineralization during microbial iron reduction and aid the development of practical applications.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c03853</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Anions ; Anthraquinone ; Anthraquinones ; Bifurcations ; Contaminants in Aquatic and Terrestrial Environments ; Environmental conditions ; ENVIRONMENTAL SCIENCES ; Geochemistry ; Goethite ; Hematite ; Iron ; Magnetite ; Microorganisms ; Mineralization ; Mineralogy ; Minerals ; phosphates ; redox reactions ; Sodium chloride ; Sulfates ; X ray absorption</subject><ispartof>Environmental science & technology, 2020-08, Vol.54 (16), p.10128-10140</ispartof><rights>Copyright American Chemical Society Aug 18, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663</citedby><cites>FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663</cites><orcidid>0000-0003-1607-9529 ; 0000-0001-8758-5248 ; 0000-0002-1838-8942 ; 0000000316079529 ; 0000000187585248 ; 0000000218388942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1774368$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Yiran</creatorcontrib><creatorcontrib>Sanford, Robert A</creatorcontrib><creatorcontrib>Boyanov, Maxim I</creatorcontrib><creatorcontrib>Flynn, Theodore M</creatorcontrib><creatorcontrib>O’Loughlin, Edward J</creatorcontrib><creatorcontrib>Kemner, Kenneth M</creatorcontrib><creatorcontrib>George, Samantha</creatorcontrib><creatorcontrib>Fouke, Kaitlyn E</creatorcontrib><creatorcontrib>Li, Shuyi</creatorcontrib><creatorcontrib>Huang, Dongmei</creatorcontrib><creatorcontrib>Li, Shuzhen</creatorcontrib><creatorcontrib>Fouke, Bruce W</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe(III) oxides. Here, we investigated the primary driving factor(s) that mediate secondary iron mineral formation over a broad range of environmental conditions using a single dissimilatory iron reducer, Orenia metallireducens strain Z6. A total of 17 distinct geochemical conditions were tested with differing pH (6.5–8.5), temperature (22–50 °C), salinity (2–20% NaCl), anions (phosphate and sulfate), electron shuttle (anthraquinone-2,6-disulfonate), and Fe(III) oxide mineralogy (ferrihydrite, lepidocrocite, goethite, hematite, and magnetite). The observed rates and extent of iron reduction differed significantly with k int between 0.186 and 1.702 mmol L–1 day–1 and Fe(II) production ranging from 6.3% to 83.7% of the initial Fe(III). Using X-ray absorption and scattering techniques (EXAFS and XRD), we identified and assessed the relationship between secondary minerals and the specific environmental conditions. It was inferred that the observed bifurcation of the mineralization pathways may be mediated by differing extents of Fe(II) sorption on the remaining Fe(III) minerals. These results expand our understanding of the controls on biomineralization during microbial iron reduction and aid the development of practical applications.</description><subject>Anions</subject><subject>Anthraquinone</subject><subject>Anthraquinones</subject><subject>Bifurcations</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Environmental conditions</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Geochemistry</subject><subject>Goethite</subject><subject>Hematite</subject><subject>Iron</subject><subject>Magnetite</subject><subject>Microorganisms</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>phosphates</subject><subject>redox reactions</subject><subject>Sodium chloride</subject><subject>Sulfates</subject><subject>X ray absorption</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUtr3DAUhUVJoJNJ192KZlMonuhhyfYyGfKCQKBpoXQjZPkqUbClVJID6e_oD66cCVkUutHV4zvn6nIQ-kjJhhJGj7VJG0h5QwzhreDv0IoKRirRCrqHVoRQXnVc_niPDlJ6IIQwTtoV-rMNPscwJhw8vopl-QrDbLIrO-0HfOrC5DxEPbrf-uU2PEHEpzHoAZ_5J1ckE_isR1ycBrcgCeuEb-e7u_IdGHD_jPM94HMXJ2fmDAnfRPBO4wmKbHRxaQhFdZujdh7_lIdo3-oxwYfXukbfz8--bS-r65uLq-3JdaW5FLmyg7A91bKnXdsJ0cu-bjsje8ssa8QwiK6cWmMZUFYqtcQ2nNCGAyGNkZKv0aedb0jZqWRcBnNvgvdgsqJNU3PZFujzDnqM4ddcRlKTSwbGUXsIc1KsZpK2gjQLevQP-hDm6MsIhapr2fCudF-j4x1lYkgpglWP0U06PitK1BKlKlGqRf0aZVF82SmWhzfL_9F_Ac8to1k</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Dong, Yiran</creator><creator>Sanford, Robert A</creator><creator>Boyanov, Maxim I</creator><creator>Flynn, Theodore M</creator><creator>O’Loughlin, Edward J</creator><creator>Kemner, Kenneth M</creator><creator>George, Samantha</creator><creator>Fouke, Kaitlyn E</creator><creator>Li, Shuyi</creator><creator>Huang, Dongmei</creator><creator>Li, Shuzhen</creator><creator>Fouke, Bruce W</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1607-9529</orcidid><orcidid>https://orcid.org/0000-0001-8758-5248</orcidid><orcidid>https://orcid.org/0000-0002-1838-8942</orcidid><orcidid>https://orcid.org/0000000316079529</orcidid><orcidid>https://orcid.org/0000000187585248</orcidid><orcidid>https://orcid.org/0000000218388942</orcidid></search><sort><creationdate>20200818</creationdate><title>Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6</title><author>Dong, Yiran ; Sanford, Robert A ; Boyanov, Maxim I ; Flynn, Theodore M ; O’Loughlin, Edward J ; Kemner, Kenneth M ; George, Samantha ; Fouke, Kaitlyn E ; Li, Shuyi ; Huang, Dongmei ; Li, Shuzhen ; Fouke, Bruce W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anions</topic><topic>Anthraquinone</topic><topic>Anthraquinones</topic><topic>Bifurcations</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Environmental conditions</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Geochemistry</topic><topic>Goethite</topic><topic>Hematite</topic><topic>Iron</topic><topic>Magnetite</topic><topic>Microorganisms</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>phosphates</topic><topic>redox reactions</topic><topic>Sodium chloride</topic><topic>Sulfates</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yiran</creatorcontrib><creatorcontrib>Sanford, Robert A</creatorcontrib><creatorcontrib>Boyanov, Maxim I</creatorcontrib><creatorcontrib>Flynn, Theodore M</creatorcontrib><creatorcontrib>O’Loughlin, Edward J</creatorcontrib><creatorcontrib>Kemner, Kenneth M</creatorcontrib><creatorcontrib>George, Samantha</creatorcontrib><creatorcontrib>Fouke, Kaitlyn E</creatorcontrib><creatorcontrib>Li, Shuyi</creatorcontrib><creatorcontrib>Huang, Dongmei</creatorcontrib><creatorcontrib>Li, Shuzhen</creatorcontrib><creatorcontrib>Fouke, Bruce W</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yiran</au><au>Sanford, Robert A</au><au>Boyanov, Maxim I</au><au>Flynn, Theodore M</au><au>O’Loughlin, Edward J</au><au>Kemner, Kenneth M</au><au>George, Samantha</au><au>Fouke, Kaitlyn E</au><au>Li, Shuyi</au><au>Huang, Dongmei</au><au>Li, Shuzhen</au><au>Fouke, Bruce W</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-08-18</date><risdate>2020</risdate><volume>54</volume><issue>16</issue><spage>10128</spage><epage>10140</epage><pages>10128-10140</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe(III) oxides. Here, we investigated the primary driving factor(s) that mediate secondary iron mineral formation over a broad range of environmental conditions using a single dissimilatory iron reducer, Orenia metallireducens strain Z6. A total of 17 distinct geochemical conditions were tested with differing pH (6.5–8.5), temperature (22–50 °C), salinity (2–20% NaCl), anions (phosphate and sulfate), electron shuttle (anthraquinone-2,6-disulfonate), and Fe(III) oxide mineralogy (ferrihydrite, lepidocrocite, goethite, hematite, and magnetite). The observed rates and extent of iron reduction differed significantly with k int between 0.186 and 1.702 mmol L–1 day–1 and Fe(II) production ranging from 6.3% to 83.7% of the initial Fe(III). Using X-ray absorption and scattering techniques (EXAFS and XRD), we identified and assessed the relationship between secondary minerals and the specific environmental conditions. It was inferred that the observed bifurcation of the mineralization pathways may be mediated by differing extents of Fe(II) sorption on the remaining Fe(III) minerals. These results expand our understanding of the controls on biomineralization during microbial iron reduction and aid the development of practical applications.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.0c03853</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1607-9529</orcidid><orcidid>https://orcid.org/0000-0001-8758-5248</orcidid><orcidid>https://orcid.org/0000-0002-1838-8942</orcidid><orcidid>https://orcid.org/0000000316079529</orcidid><orcidid>https://orcid.org/0000000187585248</orcidid><orcidid>https://orcid.org/0000000218388942</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-08, Vol.54 (16), p.10128-10140 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_osti_scitechconnect_1774368 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Anions Anthraquinone Anthraquinones Bifurcations Contaminants in Aquatic and Terrestrial Environments Environmental conditions ENVIRONMENTAL SCIENCES Geochemistry Goethite Hematite Iron Magnetite Microorganisms Mineralization Mineralogy Minerals phosphates redox reactions Sodium chloride Sulfates X ray absorption |
title | Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controls%20on%20Iron%20Reduction%20and%20Biomineralization%20over%20Broad%20Environmental%20Conditions%20as%20Suggested%20by%20the%20Firmicutes%20Orenia%20metallireducens%20Strain%20Z6&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Dong,%20Yiran&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-08-18&rft.volume=54&rft.issue=16&rft.spage=10128&rft.epage=10140&rft.pages=10128-10140&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c03853&rft_dat=%3Cproquest_osti_%3E2444673917%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a365t-fd5fb1a6b198955b6b489c6bf2f275dd599c68cf2e1268c1f0f730173e007c663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444673917&rft_id=info:pmid/&rfr_iscdi=true |