Loading…
Controlling Tc of iridium films using the proximity effect
A superconducting Transition-Edge Sensor (TES) with low- T c is essential in high resolution calorimetric detection. With the motivation of developing sensitive calorimeters for applications in cryogenic neutrinoless double beta decay searches, we have been investigating methods to reduce the T c of...
Saved in:
Published in: | Journal of applied physics 2020-10, Vol.128 (15) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A superconducting Transition-Edge Sensor (TES) with low- T c is essential in high resolution calorimetric detection. With the motivation of developing sensitive calorimeters for applications in cryogenic neutrinoless double beta decay searches, we have been investigating methods to reduce the T c of an Ir film down to 20 mK. Here, utilizing the proximity effect between a superconductor and a normal metal, we found two room temperature fabrication recipes for making Ir-based low- T c films. In the first approach, an Ir film sandwiched between two Au films, a Au/Ir/Au trilayer, has a tunable T c in the range of 20–100 mK depending on the relative thicknesses. In the second approach, a paramagnetic Pt thin film is used to create the Ir/Pt bilayer with a tunable T c in the same range. We present a detailed study of fabrication and characterization of Ir-based low- T c films and compare the experimental results to the theoretical models. We show that Ir-based films with a predictable and reproducible critical temperature can be consistently fabricated for use in large scale detector applications. |
---|---|
ISSN: | 0021-8979 1089-7550 |