Loading…

Understanding the Reactions Between Fe and Se Binary Diffusion Couples

Spurred by recent discoveries of high-temperature superconductivity in Fe–Se-based materials, the magnetic, electronic, and catalytic properties of iron chalcogenides have drawn significant attention. However, much remains to be understood about the sequence of phase formation in these systems. Here...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2021-04, Vol.33 (7), p.2585-2592
Main Authors: Bardgett, Dylan, Gannon, Renae N, Hamann, Danielle M, Roberts, Dennice M, Bauers, Sage R, Lu, Ping, Johnson, David C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a369t-e05d189833677e1e70e971ecae1bab15150a306c2b42aebc32fba3484f29b6073
cites cdi_FETCH-LOGICAL-a369t-e05d189833677e1e70e971ecae1bab15150a306c2b42aebc32fba3484f29b6073
container_end_page 2592
container_issue 7
container_start_page 2585
container_title Chemistry of materials
container_volume 33
creator Bardgett, Dylan
Gannon, Renae N
Hamann, Danielle M
Roberts, Dennice M
Bauers, Sage R
Lu, Ping
Johnson, David C
description Spurred by recent discoveries of high-temperature superconductivity in Fe–Se-based materials, the magnetic, electronic, and catalytic properties of iron chalcogenides have drawn significant attention. However, much remains to be understood about the sequence of phase formation in these systems. Here, we shed light on this issue by preparing a series of binary Fe–Se ultrathin diffusion couples via designed thin-film precursors and investigating their structural evolution as a function of composition and annealing temperature. Two previously unreported Fe–Se phases crystallized during the deposition process on a nominally room-temperature Si substrate in the 27–33 and 37–47% Fe (atomic percent) composition regimes. Both phases completely decompose after annealing to 200 °C in a nitrogen glovebox. At higher temperatures, the sequence of phase formation is governed by Se loss in the annealing process, consistent with what would be expected from the phase diagram. Films rich in Fe (53–59% Fe) crystalized during deposition as β-FeSe (P4/nmm) with preferred c-axis orientation to the amorphous SiO2 substrate surface, providing a means to nonepitaxial self-assembly of crystallographically aligned, iron-rich β-FeSe for future research. Our findings suggest that the crystallization of binary Fe–Se compounds at room temperature via near diffusionless transformations should be a significant consideration in future attempts to prepare metastable ternary and higher-order compounds containing Fe and Se.
doi_str_mv 10.1021/acs.chemmater.1c00303
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1774644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b393614014</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-e05d189833677e1e70e971ecae1bab15150a306c2b42aebc32fba3484f29b6073</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhoMoWKuPIATvW2c2m83u0VarQkFQew7ZdNZuabMlySK-vSktXj3N4f-_YeZj7BZhgpDjvbFhYte025lIfoIWQIA4YyOUOWQSID9nI6hqlRVKlpfsKoQNACa0GrH50q3Ih2jcqnNfPK6Jv5Oxsetd4FOK30SOz4mnnH8Qn3bO-B_-2LXtEFKHz_phv6VwzS5asw10c5pjtpw_fc5essXb8-vsYZEZUdYxI5ArrOpKiFIpQlJAtUKyhrAxDUqUYASUNm-K3FBjRd42RhRV0eZ1U4ISY3Z33NuH2Olgu0h2bXvnyEaNShVlUaSSPJas70Pw1Oq973bpbo2gD8Z0Mqb_jOmTscThkTvEm37wLr3yD_MLKYpy7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding the Reactions Between Fe and Se Binary Diffusion Couples</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Bardgett, Dylan ; Gannon, Renae N ; Hamann, Danielle M ; Roberts, Dennice M ; Bauers, Sage R ; Lu, Ping ; Johnson, David C</creator><creatorcontrib>Bardgett, Dylan ; Gannon, Renae N ; Hamann, Danielle M ; Roberts, Dennice M ; Bauers, Sage R ; Lu, Ping ; Johnson, David C ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)National Renewable Energy Laboratory (NREL), Golden, CO (United States) ; National Renewable Energy Lab. (NREL), Golden, CO (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT) ; Univ. of Oregon, Eugene, OR (United States) ; Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies (CINT) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Spurred by recent discoveries of high-temperature superconductivity in Fe–Se-based materials, the magnetic, electronic, and catalytic properties of iron chalcogenides have drawn significant attention. However, much remains to be understood about the sequence of phase formation in these systems. Here, we shed light on this issue by preparing a series of binary Fe–Se ultrathin diffusion couples via designed thin-film precursors and investigating their structural evolution as a function of composition and annealing temperature. Two previously unreported Fe–Se phases crystallized during the deposition process on a nominally room-temperature Si substrate in the 27–33 and 37–47% Fe (atomic percent) composition regimes. Both phases completely decompose after annealing to 200 °C in a nitrogen glovebox. At higher temperatures, the sequence of phase formation is governed by Se loss in the annealing process, consistent with what would be expected from the phase diagram. Films rich in Fe (53–59% Fe) crystalized during deposition as β-FeSe (P4/nmm) with preferred c-axis orientation to the amorphous SiO2 substrate surface, providing a means to nonepitaxial self-assembly of crystallographically aligned, iron-rich β-FeSe for future research. Our findings suggest that the crystallization of binary Fe–Se compounds at room temperature via near diffusionless transformations should be a significant consideration in future attempts to prepare metastable ternary and higher-order compounds containing Fe and Se.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c00303</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>diffusion couples ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; iron selenide ; MATERIALS SCIENCE ; solid state chemistry</subject><ispartof>Chemistry of materials, 2021-04, Vol.33 (7), p.2585-2592</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-e05d189833677e1e70e971ecae1bab15150a306c2b42aebc32fba3484f29b6073</citedby><cites>FETCH-LOGICAL-a369t-e05d189833677e1e70e971ecae1bab15150a306c2b42aebc32fba3484f29b6073</cites><orcidid>0000-0003-0933-4587 ; 0000-0002-1118-0997 ; 0000-0002-8937-3262 ; 0000-0002-9262-1060 ; 0000-0002-6505-5016 ; 0000000289373262 ; 0000000292621060 ; 0000000309334587 ; 0000000211180997 ; 0000000265055016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1774644$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bardgett, Dylan</creatorcontrib><creatorcontrib>Gannon, Renae N</creatorcontrib><creatorcontrib>Hamann, Danielle M</creatorcontrib><creatorcontrib>Roberts, Dennice M</creatorcontrib><creatorcontrib>Bauers, Sage R</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Johnson, David C</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT)</creatorcontrib><creatorcontrib>Univ. of Oregon, Eugene, OR (United States)</creatorcontrib><creatorcontrib>Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies (CINT)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Understanding the Reactions Between Fe and Se Binary Diffusion Couples</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Spurred by recent discoveries of high-temperature superconductivity in Fe–Se-based materials, the magnetic, electronic, and catalytic properties of iron chalcogenides have drawn significant attention. However, much remains to be understood about the sequence of phase formation in these systems. Here, we shed light on this issue by preparing a series of binary Fe–Se ultrathin diffusion couples via designed thin-film precursors and investigating their structural evolution as a function of composition and annealing temperature. Two previously unreported Fe–Se phases crystallized during the deposition process on a nominally room-temperature Si substrate in the 27–33 and 37–47% Fe (atomic percent) composition regimes. Both phases completely decompose after annealing to 200 °C in a nitrogen glovebox. At higher temperatures, the sequence of phase formation is governed by Se loss in the annealing process, consistent with what would be expected from the phase diagram. Films rich in Fe (53–59% Fe) crystalized during deposition as β-FeSe (P4/nmm) with preferred c-axis orientation to the amorphous SiO2 substrate surface, providing a means to nonepitaxial self-assembly of crystallographically aligned, iron-rich β-FeSe for future research. Our findings suggest that the crystallization of binary Fe–Se compounds at room temperature via near diffusionless transformations should be a significant consideration in future attempts to prepare metastable ternary and higher-order compounds containing Fe and Se.</description><subject>diffusion couples</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>iron selenide</subject><subject>MATERIALS SCIENCE</subject><subject>solid state chemistry</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEQhoMoWKuPIATvW2c2m83u0VarQkFQew7ZdNZuabMlySK-vSktXj3N4f-_YeZj7BZhgpDjvbFhYte025lIfoIWQIA4YyOUOWQSID9nI6hqlRVKlpfsKoQNACa0GrH50q3Ih2jcqnNfPK6Jv5Oxsetd4FOK30SOz4mnnH8Qn3bO-B_-2LXtEFKHz_phv6VwzS5asw10c5pjtpw_fc5essXb8-vsYZEZUdYxI5ArrOpKiFIpQlJAtUKyhrAxDUqUYASUNm-K3FBjRd42RhRV0eZ1U4ISY3Z33NuH2Olgu0h2bXvnyEaNShVlUaSSPJas70Pw1Oq973bpbo2gD8Z0Mqb_jOmTscThkTvEm37wLr3yD_MLKYpy7w</recordid><startdate>20210413</startdate><enddate>20210413</enddate><creator>Bardgett, Dylan</creator><creator>Gannon, Renae N</creator><creator>Hamann, Danielle M</creator><creator>Roberts, Dennice M</creator><creator>Bauers, Sage R</creator><creator>Lu, Ping</creator><creator>Johnson, David C</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0933-4587</orcidid><orcidid>https://orcid.org/0000-0002-1118-0997</orcidid><orcidid>https://orcid.org/0000-0002-8937-3262</orcidid><orcidid>https://orcid.org/0000-0002-9262-1060</orcidid><orcidid>https://orcid.org/0000-0002-6505-5016</orcidid><orcidid>https://orcid.org/0000000289373262</orcidid><orcidid>https://orcid.org/0000000292621060</orcidid><orcidid>https://orcid.org/0000000309334587</orcidid><orcidid>https://orcid.org/0000000211180997</orcidid><orcidid>https://orcid.org/0000000265055016</orcidid></search><sort><creationdate>20210413</creationdate><title>Understanding the Reactions Between Fe and Se Binary Diffusion Couples</title><author>Bardgett, Dylan ; Gannon, Renae N ; Hamann, Danielle M ; Roberts, Dennice M ; Bauers, Sage R ; Lu, Ping ; Johnson, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-e05d189833677e1e70e971ecae1bab15150a306c2b42aebc32fba3484f29b6073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>diffusion couples</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>iron selenide</topic><topic>MATERIALS SCIENCE</topic><topic>solid state chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardgett, Dylan</creatorcontrib><creatorcontrib>Gannon, Renae N</creatorcontrib><creatorcontrib>Hamann, Danielle M</creatorcontrib><creatorcontrib>Roberts, Dennice M</creatorcontrib><creatorcontrib>Bauers, Sage R</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Johnson, David C</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT)</creatorcontrib><creatorcontrib>Univ. of Oregon, Eugene, OR (United States)</creatorcontrib><creatorcontrib>Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies (CINT)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardgett, Dylan</au><au>Gannon, Renae N</au><au>Hamann, Danielle M</au><au>Roberts, Dennice M</au><au>Bauers, Sage R</au><au>Lu, Ping</au><au>Johnson, David C</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT)</aucorp><aucorp>Univ. of Oregon, Eugene, OR (United States)</aucorp><aucorp>Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies (CINT)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Reactions Between Fe and Se Binary Diffusion Couples</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-04-13</date><risdate>2021</risdate><volume>33</volume><issue>7</issue><spage>2585</spage><epage>2592</epage><pages>2585-2592</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Spurred by recent discoveries of high-temperature superconductivity in Fe–Se-based materials, the magnetic, electronic, and catalytic properties of iron chalcogenides have drawn significant attention. However, much remains to be understood about the sequence of phase formation in these systems. Here, we shed light on this issue by preparing a series of binary Fe–Se ultrathin diffusion couples via designed thin-film precursors and investigating their structural evolution as a function of composition and annealing temperature. Two previously unreported Fe–Se phases crystallized during the deposition process on a nominally room-temperature Si substrate in the 27–33 and 37–47% Fe (atomic percent) composition regimes. Both phases completely decompose after annealing to 200 °C in a nitrogen glovebox. At higher temperatures, the sequence of phase formation is governed by Se loss in the annealing process, consistent with what would be expected from the phase diagram. Films rich in Fe (53–59% Fe) crystalized during deposition as β-FeSe (P4/nmm) with preferred c-axis orientation to the amorphous SiO2 substrate surface, providing a means to nonepitaxial self-assembly of crystallographically aligned, iron-rich β-FeSe for future research. Our findings suggest that the crystallization of binary Fe–Se compounds at room temperature via near diffusionless transformations should be a significant consideration in future attempts to prepare metastable ternary and higher-order compounds containing Fe and Se.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.1c00303</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0933-4587</orcidid><orcidid>https://orcid.org/0000-0002-1118-0997</orcidid><orcidid>https://orcid.org/0000-0002-8937-3262</orcidid><orcidid>https://orcid.org/0000-0002-9262-1060</orcidid><orcidid>https://orcid.org/0000-0002-6505-5016</orcidid><orcidid>https://orcid.org/0000000289373262</orcidid><orcidid>https://orcid.org/0000000292621060</orcidid><orcidid>https://orcid.org/0000000309334587</orcidid><orcidid>https://orcid.org/0000000211180997</orcidid><orcidid>https://orcid.org/0000000265055016</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2021-04, Vol.33 (7), p.2585-2592
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1774644
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects diffusion couples
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
iron selenide
MATERIALS SCIENCE
solid state chemistry
title Understanding the Reactions Between Fe and Se Binary Diffusion Couples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Reactions%20Between%20Fe%20and%20Se%20Binary%20Diffusion%20Couples&rft.jtitle=Chemistry%20of%20materials&rft.au=Bardgett,%20Dylan&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2021-04-13&rft.volume=33&rft.issue=7&rft.spage=2585&rft.epage=2592&rft.pages=2585-2592&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c00303&rft_dat=%3Cacs_osti_%3Eb393614014%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a369t-e05d189833677e1e70e971ecae1bab15150a306c2b42aebc32fba3484f29b6073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true