Loading…
Halide Ion Migration in Perovskite Nanocrystals and Nanostructures
Conspectus The optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion...
Saved in:
Published in: | Accounts of chemical research 2021-02, Vol.54 (3), p.520-531 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63 |
---|---|
cites | cdi_FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63 |
container_end_page | 531 |
container_issue | 3 |
container_start_page | 520 |
container_title | Accounts of chemical research |
container_volume | 54 |
creator | Kamat, Prashant V Kuno, Masaru |
description | Conspectus The optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion migration through halide exchange between two nanocrystal suspensions or between physically paired films of two different metal halide perovskites. The ability to tune band gap by varying halide ratios (Cl:Br or Br:I) allows the synthesis of mixed halide perovskites with tailored absorption and emission across the entire visible spectrum. Interestingly, mixed halide (e.g., MAPb(Br0.5I0.5)3) films undergo phase segregation to form Br-rich and I-rich sites under steady state illumination. Upon halting illumination, segregated phases mix to restore original mixed halide compositions. Introducing multiple cations (Cs, formamidinium) at the A site or alloying with Cl greatly suppresses halide mobilities. Long-term irradiation of MAPb(Br0.5I0.5)3 films also cause expulsion of iodide leaving behind Br-rich phases. Hole trapping at I-rich sites in MAPb(Br0.5I0.5)3 is considered to be an important step in inducing halide mobility in photoirradiated films. This Account focuses on halide ion migration in nanocrystals and nanostructured films driven by entropy of mixing in dark and phase segregation under light irradiation. |
doi_str_mv | 10.1021/acs.accounts.0c00749 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1774775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c55279801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhF7FPGj8bOEiqglcpjAWvLmTiQ0jqVnSD173FJy5KVx557r2cOIZcUxhQYvTEYxgax6VwbxoAAUuRHZEgnDFKhcnVMhgBAYy3YgJyFsIxXJjJ5SgacCznhXA3J3cys6tIm88YlT_WHN20dq9olr9Y33-Grbm3ybFyDfhtaswqJceXvQ2h9h23nbTgnJ1Xs2Iv9OSLvD_dv01m6eHmcT28XqRFKtmkFBQikpqy4EIxbFAjCUIrKqFIWyCBT0khlJANegs0UF_mkqPKMVYUpMz4i131u_LvWAeNo-ImNcxZbTaUUMu40IqIXoW9C8LbSG1-vjd9qCnrHTUdu-sBN77lF21Vv23TF2pZ_pgOoKIBesLMvm867uOr_mT8CPH1K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Halide Ion Migration in Perovskite Nanocrystals and Nanostructures</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kamat, Prashant V ; Kuno, Masaru</creator><creatorcontrib>Kamat, Prashant V ; Kuno, Masaru ; Univ. of Notre Dame, IN (United States)</creatorcontrib><description>Conspectus The optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion migration through halide exchange between two nanocrystal suspensions or between physically paired films of two different metal halide perovskites. The ability to tune band gap by varying halide ratios (Cl:Br or Br:I) allows the synthesis of mixed halide perovskites with tailored absorption and emission across the entire visible spectrum. Interestingly, mixed halide (e.g., MAPb(Br0.5I0.5)3) films undergo phase segregation to form Br-rich and I-rich sites under steady state illumination. Upon halting illumination, segregated phases mix to restore original mixed halide compositions. Introducing multiple cations (Cs, formamidinium) at the A site or alloying with Cl greatly suppresses halide mobilities. Long-term irradiation of MAPb(Br0.5I0.5)3 films also cause expulsion of iodide leaving behind Br-rich phases. Hole trapping at I-rich sites in MAPb(Br0.5I0.5)3 is considered to be an important step in inducing halide mobility in photoirradiated films. This Account focuses on halide ion migration in nanocrystals and nanostructured films driven by entropy of mixing in dark and phase segregation under light irradiation.</description><identifier>ISSN: 0001-4842</identifier><identifier>EISSN: 1520-4898</identifier><identifier>DOI: 10.1021/acs.accounts.0c00749</identifier><identifier>PMID: 33475338</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Halogens ; Inorganic compounds ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Nanocrystals ; Perovskites ; Solar cells ; SOLAR ENERGY</subject><ispartof>Accounts of chemical research, 2021-02, Vol.54 (3), p.520-531</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63</citedby><cites>FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63</cites><orcidid>0000-0003-4210-8514 ; 0000-0002-2465-6819 ; 0000000342108514 ; 0000000224656819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33475338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1774775$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamat, Prashant V</creatorcontrib><creatorcontrib>Kuno, Masaru</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><title>Halide Ion Migration in Perovskite Nanocrystals and Nanostructures</title><title>Accounts of chemical research</title><addtitle>Acc. Chem. Res</addtitle><description>Conspectus The optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion migration through halide exchange between two nanocrystal suspensions or between physically paired films of two different metal halide perovskites. The ability to tune band gap by varying halide ratios (Cl:Br or Br:I) allows the synthesis of mixed halide perovskites with tailored absorption and emission across the entire visible spectrum. Interestingly, mixed halide (e.g., MAPb(Br0.5I0.5)3) films undergo phase segregation to form Br-rich and I-rich sites under steady state illumination. Upon halting illumination, segregated phases mix to restore original mixed halide compositions. Introducing multiple cations (Cs, formamidinium) at the A site or alloying with Cl greatly suppresses halide mobilities. Long-term irradiation of MAPb(Br0.5I0.5)3 films also cause expulsion of iodide leaving behind Br-rich phases. Hole trapping at I-rich sites in MAPb(Br0.5I0.5)3 is considered to be an important step in inducing halide mobility in photoirradiated films. This Account focuses on halide ion migration in nanocrystals and nanostructured films driven by entropy of mixing in dark and phase segregation under light irradiation.</description><subject>Halogens</subject><subject>Inorganic compounds</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Nanocrystals</subject><subject>Perovskites</subject><subject>Solar cells</subject><subject>SOLAR ENERGY</subject><issn>0001-4842</issn><issn>1520-4898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhF7FPGj8bOEiqglcpjAWvLmTiQ0jqVnSD173FJy5KVx557r2cOIZcUxhQYvTEYxgax6VwbxoAAUuRHZEgnDFKhcnVMhgBAYy3YgJyFsIxXJjJ5SgacCznhXA3J3cys6tIm88YlT_WHN20dq9olr9Y33-Grbm3ybFyDfhtaswqJceXvQ2h9h23nbTgnJ1Xs2Iv9OSLvD_dv01m6eHmcT28XqRFKtmkFBQikpqy4EIxbFAjCUIrKqFIWyCBT0khlJANegs0UF_mkqPKMVYUpMz4i131u_LvWAeNo-ImNcxZbTaUUMu40IqIXoW9C8LbSG1-vjd9qCnrHTUdu-sBN77lF21Vv23TF2pZ_pgOoKIBesLMvm867uOr_mT8CPH1K</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Kamat, Prashant V</creator><creator>Kuno, Masaru</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4210-8514</orcidid><orcidid>https://orcid.org/0000-0002-2465-6819</orcidid><orcidid>https://orcid.org/0000000342108514</orcidid><orcidid>https://orcid.org/0000000224656819</orcidid></search><sort><creationdate>20210202</creationdate><title>Halide Ion Migration in Perovskite Nanocrystals and Nanostructures</title><author>Kamat, Prashant V ; Kuno, Masaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Halogens</topic><topic>Inorganic compounds</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Nanocrystals</topic><topic>Perovskites</topic><topic>Solar cells</topic><topic>SOLAR ENERGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamat, Prashant V</creatorcontrib><creatorcontrib>Kuno, Masaru</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Accounts of chemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamat, Prashant V</au><au>Kuno, Masaru</au><aucorp>Univ. of Notre Dame, IN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halide Ion Migration in Perovskite Nanocrystals and Nanostructures</atitle><jtitle>Accounts of chemical research</jtitle><addtitle>Acc. Chem. Res</addtitle><date>2021-02-02</date><risdate>2021</risdate><volume>54</volume><issue>3</issue><spage>520</spage><epage>531</epage><pages>520-531</pages><issn>0001-4842</issn><eissn>1520-4898</eissn><abstract>Conspectus The optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion migration through halide exchange between two nanocrystal suspensions or between physically paired films of two different metal halide perovskites. The ability to tune band gap by varying halide ratios (Cl:Br or Br:I) allows the synthesis of mixed halide perovskites with tailored absorption and emission across the entire visible spectrum. Interestingly, mixed halide (e.g., MAPb(Br0.5I0.5)3) films undergo phase segregation to form Br-rich and I-rich sites under steady state illumination. Upon halting illumination, segregated phases mix to restore original mixed halide compositions. Introducing multiple cations (Cs, formamidinium) at the A site or alloying with Cl greatly suppresses halide mobilities. Long-term irradiation of MAPb(Br0.5I0.5)3 films also cause expulsion of iodide leaving behind Br-rich phases. Hole trapping at I-rich sites in MAPb(Br0.5I0.5)3 is considered to be an important step in inducing halide mobility in photoirradiated films. This Account focuses on halide ion migration in nanocrystals and nanostructured films driven by entropy of mixing in dark and phase segregation under light irradiation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33475338</pmid><doi>10.1021/acs.accounts.0c00749</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4210-8514</orcidid><orcidid>https://orcid.org/0000-0002-2465-6819</orcidid><orcidid>https://orcid.org/0000000342108514</orcidid><orcidid>https://orcid.org/0000000224656819</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4842 |
ispartof | Accounts of chemical research, 2021-02, Vol.54 (3), p.520-531 |
issn | 0001-4842 1520-4898 |
language | eng |
recordid | cdi_osti_scitechconnect_1774775 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Halogens Inorganic compounds INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Nanocrystals Perovskites Solar cells SOLAR ENERGY |
title | Halide Ion Migration in Perovskite Nanocrystals and Nanostructures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halide%20Ion%20Migration%20in%20Perovskite%20Nanocrystals%20and%20Nanostructures&rft.jtitle=Accounts%20of%20chemical%20research&rft.au=Kamat,%20Prashant%20V&rft.aucorp=Univ.%20of%20Notre%20Dame,%20IN%20(United%20States)&rft.date=2021-02-02&rft.volume=54&rft.issue=3&rft.spage=520&rft.epage=531&rft.pages=520-531&rft.issn=0001-4842&rft.eissn=1520-4898&rft_id=info:doi/10.1021/acs.accounts.0c00749&rft_dat=%3Cacs_osti_%3Ec55279801%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33475338&rfr_iscdi=true |