Loading…

Halide Ion Migration in Perovskite Nanocrystals and Nanostructures

Conspectus The optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion...

Full description

Saved in:
Bibliographic Details
Published in:Accounts of chemical research 2021-02, Vol.54 (3), p.520-531
Main Authors: Kamat, Prashant V, Kuno, Masaru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63
cites cdi_FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63
container_end_page 531
container_issue 3
container_start_page 520
container_title Accounts of chemical research
container_volume 54
creator Kamat, Prashant V
Kuno, Masaru
description Conspectus The optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion migration through halide exchange between two nanocrystal suspensions or between physically paired films of two different metal halide perovskites. The ability to tune band gap by varying halide ratios (Cl:Br or Br:I) allows the synthesis of mixed halide perovskites with tailored absorption and emission across the entire visible spectrum. Interestingly, mixed halide (e.g., MAPb­(Br0.5I0.5)3) films undergo phase segregation to form Br-rich and I-rich sites under steady state illumination. Upon halting illumination, segregated phases mix to restore original mixed halide compositions. Introducing multiple cations (Cs, formamidinium) at the A site or alloying with Cl greatly suppresses halide mobilities. Long-term irradiation of MAPb­(Br0.5I0.5)3 films also cause expulsion of iodide leaving behind Br-rich phases. Hole trapping at I-rich sites in MAPb­(Br0.5I0.5)3 is considered to be an important step in inducing halide mobility in photoirradiated films. This Account focuses on halide ion migration in nanocrystals and nanostructured films driven by entropy of mixing in dark and phase segregation under light irradiation.
doi_str_mv 10.1021/acs.accounts.0c00749
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1774775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c55279801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhF7FPGj8bOEiqglcpjAWvLmTiQ0jqVnSD173FJy5KVx557r2cOIZcUxhQYvTEYxgax6VwbxoAAUuRHZEgnDFKhcnVMhgBAYy3YgJyFsIxXJjJ5SgacCznhXA3J3cys6tIm88YlT_WHN20dq9olr9Y33-Grbm3ybFyDfhtaswqJceXvQ2h9h23nbTgnJ1Xs2Iv9OSLvD_dv01m6eHmcT28XqRFKtmkFBQikpqy4EIxbFAjCUIrKqFIWyCBT0khlJANegs0UF_mkqPKMVYUpMz4i131u_LvWAeNo-ImNcxZbTaUUMu40IqIXoW9C8LbSG1-vjd9qCnrHTUdu-sBN77lF21Vv23TF2pZ_pgOoKIBesLMvm867uOr_mT8CPH1K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Halide Ion Migration in Perovskite Nanocrystals and Nanostructures</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kamat, Prashant V ; Kuno, Masaru</creator><creatorcontrib>Kamat, Prashant V ; Kuno, Masaru ; Univ. of Notre Dame, IN (United States)</creatorcontrib><description>Conspectus The optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion migration through halide exchange between two nanocrystal suspensions or between physically paired films of two different metal halide perovskites. The ability to tune band gap by varying halide ratios (Cl:Br or Br:I) allows the synthesis of mixed halide perovskites with tailored absorption and emission across the entire visible spectrum. Interestingly, mixed halide (e.g., MAPb­(Br0.5I0.5)3) films undergo phase segregation to form Br-rich and I-rich sites under steady state illumination. Upon halting illumination, segregated phases mix to restore original mixed halide compositions. Introducing multiple cations (Cs, formamidinium) at the A site or alloying with Cl greatly suppresses halide mobilities. Long-term irradiation of MAPb­(Br0.5I0.5)3 films also cause expulsion of iodide leaving behind Br-rich phases. Hole trapping at I-rich sites in MAPb­(Br0.5I0.5)3 is considered to be an important step in inducing halide mobility in photoirradiated films. This Account focuses on halide ion migration in nanocrystals and nanostructured films driven by entropy of mixing in dark and phase segregation under light irradiation.</description><identifier>ISSN: 0001-4842</identifier><identifier>EISSN: 1520-4898</identifier><identifier>DOI: 10.1021/acs.accounts.0c00749</identifier><identifier>PMID: 33475338</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Halogens ; Inorganic compounds ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Nanocrystals ; Perovskites ; Solar cells ; SOLAR ENERGY</subject><ispartof>Accounts of chemical research, 2021-02, Vol.54 (3), p.520-531</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63</citedby><cites>FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63</cites><orcidid>0000-0003-4210-8514 ; 0000-0002-2465-6819 ; 0000000342108514 ; 0000000224656819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33475338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1774775$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamat, Prashant V</creatorcontrib><creatorcontrib>Kuno, Masaru</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><title>Halide Ion Migration in Perovskite Nanocrystals and Nanostructures</title><title>Accounts of chemical research</title><addtitle>Acc. Chem. Res</addtitle><description>Conspectus The optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion migration through halide exchange between two nanocrystal suspensions or between physically paired films of two different metal halide perovskites. The ability to tune band gap by varying halide ratios (Cl:Br or Br:I) allows the synthesis of mixed halide perovskites with tailored absorption and emission across the entire visible spectrum. Interestingly, mixed halide (e.g., MAPb­(Br0.5I0.5)3) films undergo phase segregation to form Br-rich and I-rich sites under steady state illumination. Upon halting illumination, segregated phases mix to restore original mixed halide compositions. Introducing multiple cations (Cs, formamidinium) at the A site or alloying with Cl greatly suppresses halide mobilities. Long-term irradiation of MAPb­(Br0.5I0.5)3 films also cause expulsion of iodide leaving behind Br-rich phases. Hole trapping at I-rich sites in MAPb­(Br0.5I0.5)3 is considered to be an important step in inducing halide mobility in photoirradiated films. This Account focuses on halide ion migration in nanocrystals and nanostructured films driven by entropy of mixing in dark and phase segregation under light irradiation.</description><subject>Halogens</subject><subject>Inorganic compounds</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Nanocrystals</subject><subject>Perovskites</subject><subject>Solar cells</subject><subject>SOLAR ENERGY</subject><issn>0001-4842</issn><issn>1520-4898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhF7FPGj8bOEiqglcpjAWvLmTiQ0jqVnSD173FJy5KVx557r2cOIZcUxhQYvTEYxgax6VwbxoAAUuRHZEgnDFKhcnVMhgBAYy3YgJyFsIxXJjJ5SgacCznhXA3J3cys6tIm88YlT_WHN20dq9olr9Y33-Grbm3ybFyDfhtaswqJceXvQ2h9h23nbTgnJ1Xs2Iv9OSLvD_dv01m6eHmcT28XqRFKtmkFBQikpqy4EIxbFAjCUIrKqFIWyCBT0khlJANegs0UF_mkqPKMVYUpMz4i131u_LvWAeNo-ImNcxZbTaUUMu40IqIXoW9C8LbSG1-vjd9qCnrHTUdu-sBN77lF21Vv23TF2pZ_pgOoKIBesLMvm867uOr_mT8CPH1K</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Kamat, Prashant V</creator><creator>Kuno, Masaru</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4210-8514</orcidid><orcidid>https://orcid.org/0000-0002-2465-6819</orcidid><orcidid>https://orcid.org/0000000342108514</orcidid><orcidid>https://orcid.org/0000000224656819</orcidid></search><sort><creationdate>20210202</creationdate><title>Halide Ion Migration in Perovskite Nanocrystals and Nanostructures</title><author>Kamat, Prashant V ; Kuno, Masaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Halogens</topic><topic>Inorganic compounds</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Nanocrystals</topic><topic>Perovskites</topic><topic>Solar cells</topic><topic>SOLAR ENERGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamat, Prashant V</creatorcontrib><creatorcontrib>Kuno, Masaru</creatorcontrib><creatorcontrib>Univ. of Notre Dame, IN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Accounts of chemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamat, Prashant V</au><au>Kuno, Masaru</au><aucorp>Univ. of Notre Dame, IN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halide Ion Migration in Perovskite Nanocrystals and Nanostructures</atitle><jtitle>Accounts of chemical research</jtitle><addtitle>Acc. Chem. Res</addtitle><date>2021-02-02</date><risdate>2021</risdate><volume>54</volume><issue>3</issue><spage>520</spage><epage>531</epage><pages>520-531</pages><issn>0001-4842</issn><eissn>1520-4898</eissn><abstract>Conspectus The optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion migration through halide exchange between two nanocrystal suspensions or between physically paired films of two different metal halide perovskites. The ability to tune band gap by varying halide ratios (Cl:Br or Br:I) allows the synthesis of mixed halide perovskites with tailored absorption and emission across the entire visible spectrum. Interestingly, mixed halide (e.g., MAPb­(Br0.5I0.5)3) films undergo phase segregation to form Br-rich and I-rich sites under steady state illumination. Upon halting illumination, segregated phases mix to restore original mixed halide compositions. Introducing multiple cations (Cs, formamidinium) at the A site or alloying with Cl greatly suppresses halide mobilities. Long-term irradiation of MAPb­(Br0.5I0.5)3 films also cause expulsion of iodide leaving behind Br-rich phases. Hole trapping at I-rich sites in MAPb­(Br0.5I0.5)3 is considered to be an important step in inducing halide mobility in photoirradiated films. This Account focuses on halide ion migration in nanocrystals and nanostructured films driven by entropy of mixing in dark and phase segregation under light irradiation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33475338</pmid><doi>10.1021/acs.accounts.0c00749</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4210-8514</orcidid><orcidid>https://orcid.org/0000-0002-2465-6819</orcidid><orcidid>https://orcid.org/0000000342108514</orcidid><orcidid>https://orcid.org/0000000224656819</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4842
ispartof Accounts of chemical research, 2021-02, Vol.54 (3), p.520-531
issn 0001-4842
1520-4898
language eng
recordid cdi_osti_scitechconnect_1774775
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Halogens
Inorganic compounds
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Nanocrystals
Perovskites
Solar cells
SOLAR ENERGY
title Halide Ion Migration in Perovskite Nanocrystals and Nanostructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halide%20Ion%20Migration%20in%20Perovskite%20Nanocrystals%20and%20Nanostructures&rft.jtitle=Accounts%20of%20chemical%20research&rft.au=Kamat,%20Prashant%20V&rft.aucorp=Univ.%20of%20Notre%20Dame,%20IN%20(United%20States)&rft.date=2021-02-02&rft.volume=54&rft.issue=3&rft.spage=520&rft.epage=531&rft.pages=520-531&rft.issn=0001-4842&rft.eissn=1520-4898&rft_id=info:doi/10.1021/acs.accounts.0c00749&rft_dat=%3Cacs_osti_%3Ec55279801%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a487t-f0b04c1adf34423ec4c04a11c8a8d7bc20687a78a7203d0e683495bf962fbad63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33475338&rfr_iscdi=true