Loading…
Controlling attosecond transient absorption with tunable, non-commensurate light fields
We demonstrate a transient absorption scheme that uses a fixed-spectrum attosecond pulse train in conjunction with a tunable probe laser to access a wide range of nonlinear light-atom interactions. We exhibit control over the time-dependent Autler–Townes splitting of the 1s4p absorption line in heli...
Saved in:
Published in: | Optics letters 2018-07, Vol.43 (14) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate a transient absorption scheme that uses a fixed-spectrum attosecond pulse train in conjunction with a tunable probe laser to access a wide range of nonlinear light-atom interactions. We exhibit control over the time-dependent Autler–Townes splitting of the 1s4p absorption line in helium, and study its evolution from a resonant doublet to a light-induced sideband with changing probe wavelength. The non-commensurate probe also allows for the background-free study of two-infrared-photon emission processes in a collinear geometry. Using this capability, we observe two different emission pathways with non-trivial delay dependencies, one prompt and the other delayed. Here, we identify the nonlinear processes underlying these emissions by comparing the experimental results to calculations based on the time-dependent Schrödinger equation. |
---|---|
ISSN: | 0146-9592 1539-4794 |