Loading…

Hydrogen bond network analysis reveals the pathway for the proton transfer in the E-channel of T. thermophilus Complex I

Complex I, NADH-ubiquinone oxidoreductase, is the first enzyme in the mitochondrial and bacterial aerobic respiratory chain. It pumps four protons through four transiently open pathways from the high pH, negative, N-side of the membrane to the positive, P-side driven by the exergonic transfer of ele...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta. Bioenergetics 2020-10, Vol.1861 (10), p.148240-148240, Article 148240
Main Authors: Khaniya, Umesh, Gupta, Chitrak, Cai, Xiuhong, Mao, Junjun, Kaur, Divya, Zhang, Yingying, Singharoy, Abhishek, Gunner, M.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-ffbc314ac15894881416b159266b8c89ba587f5e42dd3067ae767fd1c28ef0053
cites cdi_FETCH-LOGICAL-c412t-ffbc314ac15894881416b159266b8c89ba587f5e42dd3067ae767fd1c28ef0053
container_end_page 148240
container_issue 10
container_start_page 148240
container_title Biochimica et biophysica acta. Bioenergetics
container_volume 1861
creator Khaniya, Umesh
Gupta, Chitrak
Cai, Xiuhong
Mao, Junjun
Kaur, Divya
Zhang, Yingying
Singharoy, Abhishek
Gunner, M.R.
description Complex I, NADH-ubiquinone oxidoreductase, is the first enzyme in the mitochondrial and bacterial aerobic respiratory chain. It pumps four protons through four transiently open pathways from the high pH, negative, N-side of the membrane to the positive, P-side driven by the exergonic transfer of electrons from NADH to a quinone. Three protons transfer through subunits descended from antiporters, while the fourth, E-channel is unique. The path through the E-channel is determined by a network analysis of hydrogen bonded pathways obtained by Monte Carlo sampling of protonation states, polar hydrogen orientation and water occupancy. Input coordinates are derived from molecular dynamics trajectories comparing oxidized, reduced (dihydro) and no menaquinone-8 (MQ). A complex proton transfer path from the N- to the P-side is found consisting of six clusters of highly connected hydrogen-bonded residues. The network connectivity depends on the presence of quinone and its redox state, supporting a role for this cofactor in coupling electron and proton transfers. The N-side is more organized with MQ-bound complex I facilitating proton entry, while the P-side is more connected in the apo-protein, facilitating proton exit. Subunit Nqo8 forms the core of the E channel; Nqo4 provides the N-side entry, Nqo7 and then Nqo10 join the pathway in the middle, while Nqo11 contributes to the P-side exit. •One of the four protons pumped through Complex I (NADH-ubiquinone oxidoreductase), goes through a unique E-channel.•Combined Molecular Dynamics, Monte Carlo and network analysis finds a complex not linear E-channel proton path.•Six buried highly inter-connected clusters of polar and protonatable residues and waters are found.•The proton path connections respond to the presence and redox state of the substrate menaquinone.
doi_str_mv 10.1016/j.bbabio.2020.148240
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005272820300906</els_id><sourcerecordid>2412988117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-ffbc314ac15894881416b159266b8c89ba587f5e42dd3067ae767fd1c28ef0053</originalsourceid><addsrcrecordid>eNp9UcFuGyEURFUj1U3zBzmgnnJZFzC7sJdKkeXGkSLlkp4Ryz6yuGtwAdvx35fN9pwTeqOZYUaD0C0lS0po82O37DrdubBkhBWIS8bJJ7SgUrQVa2ryGS0IIXXFBJNf0NeUdqTIOFst0Nv20sfwCh53wffYQz6H-Adrr8dLcglHOIEeE84D4IPOw1lfsA1xvmPIweMctU8WInb-Hd5UZtDew4iDxS_LCYv7cBjceEx4HfaHEd7w4zd0ZYsx3Px_r9HvX5uX9bZ6en54XN8_VYZTlitrO7OiXBtay5ZLSTltOlq3rGk6aWTb6VoKWwNnfb8ijdAgGmF7apgEWzqvrtH32Tek7FQyLoMZTCj5TFZUiLqWpJDuZlKp9PcIKau9SwbGUXsIx6RYydKWz6koVD5TTQwpRbDqEN1ex4uiRE1rqJ2a11DTGmpeo8h-zjIoXU8O4hQFvIHexSlJH9zHBv8AGu6U1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412988117</pqid></control><display><type>article</type><title>Hydrogen bond network analysis reveals the pathway for the proton transfer in the E-channel of T. thermophilus Complex I</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Khaniya, Umesh ; Gupta, Chitrak ; Cai, Xiuhong ; Mao, Junjun ; Kaur, Divya ; Zhang, Yingying ; Singharoy, Abhishek ; Gunner, M.R.</creator><creatorcontrib>Khaniya, Umesh ; Gupta, Chitrak ; Cai, Xiuhong ; Mao, Junjun ; Kaur, Divya ; Zhang, Yingying ; Singharoy, Abhishek ; Gunner, M.R.</creatorcontrib><description>Complex I, NADH-ubiquinone oxidoreductase, is the first enzyme in the mitochondrial and bacterial aerobic respiratory chain. It pumps four protons through four transiently open pathways from the high pH, negative, N-side of the membrane to the positive, P-side driven by the exergonic transfer of electrons from NADH to a quinone. Three protons transfer through subunits descended from antiporters, while the fourth, E-channel is unique. The path through the E-channel is determined by a network analysis of hydrogen bonded pathways obtained by Monte Carlo sampling of protonation states, polar hydrogen orientation and water occupancy. Input coordinates are derived from molecular dynamics trajectories comparing oxidized, reduced (dihydro) and no menaquinone-8 (MQ). A complex proton transfer path from the N- to the P-side is found consisting of six clusters of highly connected hydrogen-bonded residues. The network connectivity depends on the presence of quinone and its redox state, supporting a role for this cofactor in coupling electron and proton transfers. The N-side is more organized with MQ-bound complex I facilitating proton entry, while the P-side is more connected in the apo-protein, facilitating proton exit. Subunit Nqo8 forms the core of the E channel; Nqo4 provides the N-side entry, Nqo7 and then Nqo10 join the pathway in the middle, while Nqo11 contributes to the P-side exit. •One of the four protons pumped through Complex I (NADH-ubiquinone oxidoreductase), goes through a unique E-channel.•Combined Molecular Dynamics, Monte Carlo and network analysis finds a complex not linear E-channel proton path.•Six buried highly inter-connected clusters of polar and protonatable residues and waters are found.•The proton path connections respond to the presence and redox state of the substrate menaquinone.</description><identifier>ISSN: 0005-2728</identifier><identifier>EISSN: 1879-2650</identifier><identifier>DOI: 10.1016/j.bbabio.2020.148240</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Complex I ; Grand Canonical Monte Carlo Simulations ; Hydrogen bond network ; Proton pumping ; Proton transfer</subject><ispartof>Biochimica et biophysica acta. Bioenergetics, 2020-10, Vol.1861 (10), p.148240-148240, Article 148240</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-ffbc314ac15894881416b159266b8c89ba587f5e42dd3067ae767fd1c28ef0053</citedby><cites>FETCH-LOGICAL-c412t-ffbc314ac15894881416b159266b8c89ba587f5e42dd3067ae767fd1c28ef0053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1775580$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khaniya, Umesh</creatorcontrib><creatorcontrib>Gupta, Chitrak</creatorcontrib><creatorcontrib>Cai, Xiuhong</creatorcontrib><creatorcontrib>Mao, Junjun</creatorcontrib><creatorcontrib>Kaur, Divya</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><creatorcontrib>Singharoy, Abhishek</creatorcontrib><creatorcontrib>Gunner, M.R.</creatorcontrib><title>Hydrogen bond network analysis reveals the pathway for the proton transfer in the E-channel of T. thermophilus Complex I</title><title>Biochimica et biophysica acta. Bioenergetics</title><description>Complex I, NADH-ubiquinone oxidoreductase, is the first enzyme in the mitochondrial and bacterial aerobic respiratory chain. It pumps four protons through four transiently open pathways from the high pH, negative, N-side of the membrane to the positive, P-side driven by the exergonic transfer of electrons from NADH to a quinone. Three protons transfer through subunits descended from antiporters, while the fourth, E-channel is unique. The path through the E-channel is determined by a network analysis of hydrogen bonded pathways obtained by Monte Carlo sampling of protonation states, polar hydrogen orientation and water occupancy. Input coordinates are derived from molecular dynamics trajectories comparing oxidized, reduced (dihydro) and no menaquinone-8 (MQ). A complex proton transfer path from the N- to the P-side is found consisting of six clusters of highly connected hydrogen-bonded residues. The network connectivity depends on the presence of quinone and its redox state, supporting a role for this cofactor in coupling electron and proton transfers. The N-side is more organized with MQ-bound complex I facilitating proton entry, while the P-side is more connected in the apo-protein, facilitating proton exit. Subunit Nqo8 forms the core of the E channel; Nqo4 provides the N-side entry, Nqo7 and then Nqo10 join the pathway in the middle, while Nqo11 contributes to the P-side exit. •One of the four protons pumped through Complex I (NADH-ubiquinone oxidoreductase), goes through a unique E-channel.•Combined Molecular Dynamics, Monte Carlo and network analysis finds a complex not linear E-channel proton path.•Six buried highly inter-connected clusters of polar and protonatable residues and waters are found.•The proton path connections respond to the presence and redox state of the substrate menaquinone.</description><subject>Complex I</subject><subject>Grand Canonical Monte Carlo Simulations</subject><subject>Hydrogen bond network</subject><subject>Proton pumping</subject><subject>Proton transfer</subject><issn>0005-2728</issn><issn>1879-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UcFuGyEURFUj1U3zBzmgnnJZFzC7sJdKkeXGkSLlkp4Ryz6yuGtwAdvx35fN9pwTeqOZYUaD0C0lS0po82O37DrdubBkhBWIS8bJJ7SgUrQVa2ryGS0IIXXFBJNf0NeUdqTIOFst0Nv20sfwCh53wffYQz6H-Adrr8dLcglHOIEeE84D4IPOw1lfsA1xvmPIweMctU8WInb-Hd5UZtDew4iDxS_LCYv7cBjceEx4HfaHEd7w4zd0ZYsx3Px_r9HvX5uX9bZ6en54XN8_VYZTlitrO7OiXBtay5ZLSTltOlq3rGk6aWTb6VoKWwNnfb8ijdAgGmF7apgEWzqvrtH32Tek7FQyLoMZTCj5TFZUiLqWpJDuZlKp9PcIKau9SwbGUXsIx6RYydKWz6koVD5TTQwpRbDqEN1ex4uiRE1rqJ2a11DTGmpeo8h-zjIoXU8O4hQFvIHexSlJH9zHBv8AGu6U1w</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Khaniya, Umesh</creator><creator>Gupta, Chitrak</creator><creator>Cai, Xiuhong</creator><creator>Mao, Junjun</creator><creator>Kaur, Divya</creator><creator>Zhang, Yingying</creator><creator>Singharoy, Abhishek</creator><creator>Gunner, M.R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20201001</creationdate><title>Hydrogen bond network analysis reveals the pathway for the proton transfer in the E-channel of T. thermophilus Complex I</title><author>Khaniya, Umesh ; Gupta, Chitrak ; Cai, Xiuhong ; Mao, Junjun ; Kaur, Divya ; Zhang, Yingying ; Singharoy, Abhishek ; Gunner, M.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-ffbc314ac15894881416b159266b8c89ba587f5e42dd3067ae767fd1c28ef0053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Complex I</topic><topic>Grand Canonical Monte Carlo Simulations</topic><topic>Hydrogen bond network</topic><topic>Proton pumping</topic><topic>Proton transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khaniya, Umesh</creatorcontrib><creatorcontrib>Gupta, Chitrak</creatorcontrib><creatorcontrib>Cai, Xiuhong</creatorcontrib><creatorcontrib>Mao, Junjun</creatorcontrib><creatorcontrib>Kaur, Divya</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><creatorcontrib>Singharoy, Abhishek</creatorcontrib><creatorcontrib>Gunner, M.R.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaniya, Umesh</au><au>Gupta, Chitrak</au><au>Cai, Xiuhong</au><au>Mao, Junjun</au><au>Kaur, Divya</au><au>Zhang, Yingying</au><au>Singharoy, Abhishek</au><au>Gunner, M.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen bond network analysis reveals the pathway for the proton transfer in the E-channel of T. thermophilus Complex I</atitle><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>1861</volume><issue>10</issue><spage>148240</spage><epage>148240</epage><pages>148240-148240</pages><artnum>148240</artnum><issn>0005-2728</issn><eissn>1879-2650</eissn><abstract>Complex I, NADH-ubiquinone oxidoreductase, is the first enzyme in the mitochondrial and bacterial aerobic respiratory chain. It pumps four protons through four transiently open pathways from the high pH, negative, N-side of the membrane to the positive, P-side driven by the exergonic transfer of electrons from NADH to a quinone. Three protons transfer through subunits descended from antiporters, while the fourth, E-channel is unique. The path through the E-channel is determined by a network analysis of hydrogen bonded pathways obtained by Monte Carlo sampling of protonation states, polar hydrogen orientation and water occupancy. Input coordinates are derived from molecular dynamics trajectories comparing oxidized, reduced (dihydro) and no menaquinone-8 (MQ). A complex proton transfer path from the N- to the P-side is found consisting of six clusters of highly connected hydrogen-bonded residues. The network connectivity depends on the presence of quinone and its redox state, supporting a role for this cofactor in coupling electron and proton transfers. The N-side is more organized with MQ-bound complex I facilitating proton entry, while the P-side is more connected in the apo-protein, facilitating proton exit. Subunit Nqo8 forms the core of the E channel; Nqo4 provides the N-side entry, Nqo7 and then Nqo10 join the pathway in the middle, while Nqo11 contributes to the P-side exit. •One of the four protons pumped through Complex I (NADH-ubiquinone oxidoreductase), goes through a unique E-channel.•Combined Molecular Dynamics, Monte Carlo and network analysis finds a complex not linear E-channel proton path.•Six buried highly inter-connected clusters of polar and protonatable residues and waters are found.•The proton path connections respond to the presence and redox state of the substrate menaquinone.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.bbabio.2020.148240</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2728
ispartof Biochimica et biophysica acta. Bioenergetics, 2020-10, Vol.1861 (10), p.148240-148240, Article 148240
issn 0005-2728
1879-2650
language eng
recordid cdi_osti_scitechconnect_1775580
source ScienceDirect Freedom Collection 2022-2024
subjects Complex I
Grand Canonical Monte Carlo Simulations
Hydrogen bond network
Proton pumping
Proton transfer
title Hydrogen bond network analysis reveals the pathway for the proton transfer in the E-channel of T. thermophilus Complex I
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20bond%20network%20analysis%20reveals%20the%20pathway%20for%20the%20proton%20transfer%20in%20the%20E-channel%20of%20T.%20thermophilus%20Complex%20I&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Bioenergetics&rft.au=Khaniya,%20Umesh&rft.date=2020-10-01&rft.volume=1861&rft.issue=10&rft.spage=148240&rft.epage=148240&rft.pages=148240-148240&rft.artnum=148240&rft.issn=0005-2728&rft.eissn=1879-2650&rft_id=info:doi/10.1016/j.bbabio.2020.148240&rft_dat=%3Cproquest_osti_%3E2412988117%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-ffbc314ac15894881416b159266b8c89ba587f5e42dd3067ae767fd1c28ef0053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2412988117&rft_id=info:pmid/&rfr_iscdi=true