Loading…
Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors
Water leakage in accidental conditions of high temperature gas-cooled reactors is one of the most critical problems that can compromise the integrity of different nuclear components. In this study, oxidation behaviors of nuclear graphite IG-110 in water ingress accidental conditions were investigate...
Saved in:
Published in: | Carbon (New York) 2020-08, Vol.164 (C), p.251-260 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water leakage in accidental conditions of high temperature gas-cooled reactors is one of the most critical problems that can compromise the integrity of different nuclear components. In this study, oxidation behaviors of nuclear graphite IG-110 in water ingress accidental conditions were investigated. Mass loss and oxidation rates were evaluated after oxidation tests at temperatures up to 1400 °C in an Ar-20 vol% H2O mixed atmosphere. The activation energy decreased from 318.6 to 148.9 kJ/mol with temperature, indicating two different oxidation regimes. The cross-sections of the oxidized samples were systematically characterized. The corresponding logarithmic porosity profiles showed a temperature dependency. Pore formation moved toward near-surface regions with increasing temperature and preferential binder oxidation, with filler particle degradation. Furthermore, oxidant concentration profiles and oxidation depths were estimated using a theoretical model and compared with the experimental results. This work provides important benchmark data and safety analysis guidance for the accident scenario in high temperature gas-cooled reactors.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2020.04.004 |