Loading…

Glassy polymers: Historical findings, membrane applications, and unresolved questions regarding physical aging

Polymers below their glass transition temperature (Tg) are non-equilibrium glasses because excess free volume “frozen” between kinetically-restricted polymer chains slowly relaxes over time towards equilibrium via local, segmental chain motion. This process, known as physical aging, is observed thro...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2020-12, Vol.211 (C), p.123176, Article 123176
Main Authors: Merrick, Melanie M., Sujanani, Rahul, Freeman, Benny D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-60bec219c0ccb286911279d4bbdc3d5ab27f5034d98ce7031e7e2621bd19865a3
cites cdi_FETCH-LOGICAL-c411t-60bec219c0ccb286911279d4bbdc3d5ab27f5034d98ce7031e7e2621bd19865a3
container_end_page
container_issue C
container_start_page 123176
container_title Polymer (Guilford)
container_volume 211
creator Merrick, Melanie M.
Sujanani, Rahul
Freeman, Benny D.
description Polymers below their glass transition temperature (Tg) are non-equilibrium glasses because excess free volume “frozen” between kinetically-restricted polymer chains slowly relaxes over time towards equilibrium via local, segmental chain motion. This process, known as physical aging, is observed through time-dependent decreases in a polymer's specific volume, enthalpy, etc. This article focuses on the history of glassy polymers in membrane separation applications. Open questions regarding the influence of thickness (e.g., membrane geometry) and temperature on physical aging in glassy polymers are highlighted. Glassy polymers have non-equilibrium excess free volume. Consequently, they typically have time- and history-dependent properties. For example, membrane gas permeance often gradually decreases with time. [Display omitted] •A polymer below its glass transition temperature has non-equilibrium excess volume.•Glassy polymers have additional sorption capacity relative to rubbery polymers.•Non-equilibrium excess volume affects polymer properties (e.g., transport, optical).•The thickness- and temperature-dependences of physical aging remain open questions.•Glassy polymers are frequently applied in gas separation membrane applications.
doi_str_mv 10.1016/j.polymer.2020.123176
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1776180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120310016</els_id><sourcerecordid>2480000979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-60bec219c0ccb286911279d4bbdc3d5ab27f5034d98ce7031e7e2621bd19865a3</originalsourceid><addsrcrecordid>eNqFUEtLAzEQDqJgrf4EIejVrZnsI7teRIovKHjRc8gm05qyTdZkK_Tfm3Z79zTMfA---Qi5BjYDBtX9etb7brfBMOOMpxvPQVQnZAK1yDPOGzglE8ZynuV1BefkIsY1Y4yXvJgQ99qpGHf06BAf6JuNgw9Wq44urTPWreId3eCmDcohVX3fJWyw3qWzcoZuXcDou1809GeL8YDQgCsV9lraf-_iwUyt0npJzpaqi3h1nFPy9fL8OX_LFh-v7_OnRaYLgCGrWIuaQ6OZ1i2vqwaAi8YUbWt0bkrVcrEsWV6YptYoWA4okFccWgNNXZUqn5Kb0denQDJqO6D-1t451IMEISqoWSLdjqQ--EN0ufbb4FIuyYs6VcQa0SRWObJ08DEGXMo-2I0KOwlM7vuXa3lsT-77l2P_Sfc46jD9-WsTmmKg02hs2Kcw3v7j8AfXaJKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480000979</pqid></control><display><type>article</type><title>Glassy polymers: Historical findings, membrane applications, and unresolved questions regarding physical aging</title><source>Elsevier</source><creator>Merrick, Melanie M. ; Sujanani, Rahul ; Freeman, Benny D.</creator><creatorcontrib>Merrick, Melanie M. ; Sujanani, Rahul ; Freeman, Benny D.</creatorcontrib><description>Polymers below their glass transition temperature (Tg) are non-equilibrium glasses because excess free volume “frozen” between kinetically-restricted polymer chains slowly relaxes over time towards equilibrium via local, segmental chain motion. This process, known as physical aging, is observed through time-dependent decreases in a polymer's specific volume, enthalpy, etc. This article focuses on the history of glassy polymers in membrane separation applications. Open questions regarding the influence of thickness (e.g., membrane geometry) and temperature on physical aging in glassy polymers are highlighted. Glassy polymers have non-equilibrium excess free volume. Consequently, they typically have time- and history-dependent properties. For example, membrane gas permeance often gradually decreases with time. [Display omitted] •A polymer below its glass transition temperature has non-equilibrium excess volume.•Glassy polymers have additional sorption capacity relative to rubbery polymers.•Non-equilibrium excess volume affects polymer properties (e.g., transport, optical).•The thickness- and temperature-dependences of physical aging remain open questions.•Glassy polymers are frequently applied in gas separation membrane applications.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.123176</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aging ; Enthalpy ; Glass transition ; Glass transition temperature ; Membrane separation ; Membranes ; Physical aging ; Polymers ; Questions ; Sorption ; Specific volume ; Time dependence ; Transition temperatures</subject><ispartof>Polymer (Guilford), 2020-12, Vol.211 (C), p.123176, Article 123176</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 21, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-60bec219c0ccb286911279d4bbdc3d5ab27f5034d98ce7031e7e2621bd19865a3</citedby><cites>FETCH-LOGICAL-c411t-60bec219c0ccb286911279d4bbdc3d5ab27f5034d98ce7031e7e2621bd19865a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1776180$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Merrick, Melanie M.</creatorcontrib><creatorcontrib>Sujanani, Rahul</creatorcontrib><creatorcontrib>Freeman, Benny D.</creatorcontrib><title>Glassy polymers: Historical findings, membrane applications, and unresolved questions regarding physical aging</title><title>Polymer (Guilford)</title><description>Polymers below their glass transition temperature (Tg) are non-equilibrium glasses because excess free volume “frozen” between kinetically-restricted polymer chains slowly relaxes over time towards equilibrium via local, segmental chain motion. This process, known as physical aging, is observed through time-dependent decreases in a polymer's specific volume, enthalpy, etc. This article focuses on the history of glassy polymers in membrane separation applications. Open questions regarding the influence of thickness (e.g., membrane geometry) and temperature on physical aging in glassy polymers are highlighted. Glassy polymers have non-equilibrium excess free volume. Consequently, they typically have time- and history-dependent properties. For example, membrane gas permeance often gradually decreases with time. [Display omitted] •A polymer below its glass transition temperature has non-equilibrium excess volume.•Glassy polymers have additional sorption capacity relative to rubbery polymers.•Non-equilibrium excess volume affects polymer properties (e.g., transport, optical).•The thickness- and temperature-dependences of physical aging remain open questions.•Glassy polymers are frequently applied in gas separation membrane applications.</description><subject>Aging</subject><subject>Enthalpy</subject><subject>Glass transition</subject><subject>Glass transition temperature</subject><subject>Membrane separation</subject><subject>Membranes</subject><subject>Physical aging</subject><subject>Polymers</subject><subject>Questions</subject><subject>Sorption</subject><subject>Specific volume</subject><subject>Time dependence</subject><subject>Transition temperatures</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLAzEQDqJgrf4EIejVrZnsI7teRIovKHjRc8gm05qyTdZkK_Tfm3Z79zTMfA---Qi5BjYDBtX9etb7brfBMOOMpxvPQVQnZAK1yDPOGzglE8ZynuV1BefkIsY1Y4yXvJgQ99qpGHf06BAf6JuNgw9Wq44urTPWreId3eCmDcohVX3fJWyw3qWzcoZuXcDou1809GeL8YDQgCsV9lraf-_iwUyt0npJzpaqi3h1nFPy9fL8OX_LFh-v7_OnRaYLgCGrWIuaQ6OZ1i2vqwaAi8YUbWt0bkrVcrEsWV6YptYoWA4okFccWgNNXZUqn5Kb0denQDJqO6D-1t451IMEISqoWSLdjqQ--EN0ufbb4FIuyYs6VcQa0SRWObJ08DEGXMo-2I0KOwlM7vuXa3lsT-77l2P_Sfc46jD9-WsTmmKg02hs2Kcw3v7j8AfXaJKw</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Merrick, Melanie M.</creator><creator>Sujanani, Rahul</creator><creator>Freeman, Benny D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>OTOTI</scope></search><sort><creationdate>20201221</creationdate><title>Glassy polymers: Historical findings, membrane applications, and unresolved questions regarding physical aging</title><author>Merrick, Melanie M. ; Sujanani, Rahul ; Freeman, Benny D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-60bec219c0ccb286911279d4bbdc3d5ab27f5034d98ce7031e7e2621bd19865a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Enthalpy</topic><topic>Glass transition</topic><topic>Glass transition temperature</topic><topic>Membrane separation</topic><topic>Membranes</topic><topic>Physical aging</topic><topic>Polymers</topic><topic>Questions</topic><topic>Sorption</topic><topic>Specific volume</topic><topic>Time dependence</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merrick, Melanie M.</creatorcontrib><creatorcontrib>Sujanani, Rahul</creatorcontrib><creatorcontrib>Freeman, Benny D.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merrick, Melanie M.</au><au>Sujanani, Rahul</au><au>Freeman, Benny D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glassy polymers: Historical findings, membrane applications, and unresolved questions regarding physical aging</atitle><jtitle>Polymer (Guilford)</jtitle><date>2020-12-21</date><risdate>2020</risdate><volume>211</volume><issue>C</issue><spage>123176</spage><pages>123176-</pages><artnum>123176</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Polymers below their glass transition temperature (Tg) are non-equilibrium glasses because excess free volume “frozen” between kinetically-restricted polymer chains slowly relaxes over time towards equilibrium via local, segmental chain motion. This process, known as physical aging, is observed through time-dependent decreases in a polymer's specific volume, enthalpy, etc. This article focuses on the history of glassy polymers in membrane separation applications. Open questions regarding the influence of thickness (e.g., membrane geometry) and temperature on physical aging in glassy polymers are highlighted. Glassy polymers have non-equilibrium excess free volume. Consequently, they typically have time- and history-dependent properties. For example, membrane gas permeance often gradually decreases with time. [Display omitted] •A polymer below its glass transition temperature has non-equilibrium excess volume.•Glassy polymers have additional sorption capacity relative to rubbery polymers.•Non-equilibrium excess volume affects polymer properties (e.g., transport, optical).•The thickness- and temperature-dependences of physical aging remain open questions.•Glassy polymers are frequently applied in gas separation membrane applications.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.123176</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2020-12, Vol.211 (C), p.123176, Article 123176
issn 0032-3861
1873-2291
language eng
recordid cdi_osti_scitechconnect_1776180
source Elsevier
subjects Aging
Enthalpy
Glass transition
Glass transition temperature
Membrane separation
Membranes
Physical aging
Polymers
Questions
Sorption
Specific volume
Time dependence
Transition temperatures
title Glassy polymers: Historical findings, membrane applications, and unresolved questions regarding physical aging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glassy%20polymers:%20Historical%20findings,%20membrane%20applications,%20and%20unresolved%20questions%20regarding%20physical%20aging&rft.jtitle=Polymer%20(Guilford)&rft.au=Merrick,%20Melanie%20M.&rft.date=2020-12-21&rft.volume=211&rft.issue=C&rft.spage=123176&rft.pages=123176-&rft.artnum=123176&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.123176&rft_dat=%3Cproquest_osti_%3E2480000979%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-60bec219c0ccb286911279d4bbdc3d5ab27f5034d98ce7031e7e2621bd19865a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480000979&rft_id=info:pmid/&rfr_iscdi=true