Loading…
An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic
The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes w...
Saved in:
Published in: | Angewandte Chemie (International ed.) 2021-04, Vol.60 (18), p.10186-10193 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3 |
container_end_page | 10193 |
container_issue | 18 |
container_start_page | 10186 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 60 |
creator | Li, Longyu Lin, Qianming Tang, Miao Tsai, Esther H. R. Ke, Chenfeng |
description | The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes.
Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations. |
doi_str_mv | 10.1002/anie.202017019 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1776536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516870287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3</originalsourceid><addsrcrecordid>eNqF0blOwzAYB3ALgTgKKyOKYGFJseMktsdSrkrlkIDZcpwvYJTExU4E3XgEnpEnwVU5JBYme_j57-9AaJfgIcE4OVKtgWGCE0wYJmIFbZIsITFljK6Ge0ppzHhGNtCW90_Bc47zdbRBaY5zLvgmOh-10aTt4MGpDsroBLx5aCNbRSq6sfV85qEvrbOdelUtfLy9Hysf2C2oaNzrvinARZemMXobrVWq9rDzdQ7Q_dnp3fginl6fT8ajaayzlIqYCMFxVYRSlcAUeMm1yDhnFae8UKrMS1VpRgrFNS5FmmaqUIkIdRckZ5hWdID2l7nWd0Z6bTrQj9q2LehOEsbyjOYBHS7RzNnnHnwnG-M11HXowfZeJqkgIsWUs0AP_tAn27s2tCCTjOSchb8XarhU2lnvHVRy5kyj3FwSLBd7kIs9yJ89hAd7X7F90UD5w78HH4BYghdTw_yfODm6mpz-hn8CFQuS0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516870287</pqid></control><display><type>article</type><title>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</title><source>Wiley</source><creator>Li, Longyu ; Lin, Qianming ; Tang, Miao ; Tsai, Esther H. R. ; Ke, Chenfeng</creator><creatorcontrib>Li, Longyu ; Lin, Qianming ; Tang, Miao ; Tsai, Esther H. R. ; Ke, Chenfeng ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes.
Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202017019</identifier><identifier>PMID: 33606898</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; 3D printing ; Adaptability ; biomimicry ; Copolymers ; Crosslinking ; Cyclodextrin ; Cyclodextrins ; Design ; Fabrication ; Graft copolymers ; Hydrogels ; Invertebrates ; Marine animals ; Marine organisms ; MATERIALS SCIENCE ; mechanically adaptive hydrogels ; Polyethylene glycol ; polypseudorotaxane ; slide-ring gels ; Stiffness ; Tensile strain ; Three dimensional printing ; Vegetables</subject><ispartof>Angewandte Chemie (International ed.), 2021-04, Vol.60 (18), p.10186-10193</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3</citedby><cites>FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3</cites><orcidid>0000-0002-4689-8923 ; 0000-0002-3225-0229 ; 0000000232250229 ; 0000000246898923 ; 0000000258856317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33606898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1776536$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Longyu</creatorcontrib><creatorcontrib>Lin, Qianming</creatorcontrib><creatorcontrib>Tang, Miao</creatorcontrib><creatorcontrib>Tsai, Esther H. R.</creatorcontrib><creatorcontrib>Ke, Chenfeng</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes.
Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Adaptability</subject><subject>biomimicry</subject><subject>Copolymers</subject><subject>Crosslinking</subject><subject>Cyclodextrin</subject><subject>Cyclodextrins</subject><subject>Design</subject><subject>Fabrication</subject><subject>Graft copolymers</subject><subject>Hydrogels</subject><subject>Invertebrates</subject><subject>Marine animals</subject><subject>Marine organisms</subject><subject>MATERIALS SCIENCE</subject><subject>mechanically adaptive hydrogels</subject><subject>Polyethylene glycol</subject><subject>polypseudorotaxane</subject><subject>slide-ring gels</subject><subject>Stiffness</subject><subject>Tensile strain</subject><subject>Three dimensional printing</subject><subject>Vegetables</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0blOwzAYB3ALgTgKKyOKYGFJseMktsdSrkrlkIDZcpwvYJTExU4E3XgEnpEnwVU5JBYme_j57-9AaJfgIcE4OVKtgWGCE0wYJmIFbZIsITFljK6Ge0ppzHhGNtCW90_Bc47zdbRBaY5zLvgmOh-10aTt4MGpDsroBLx5aCNbRSq6sfV85qEvrbOdelUtfLy9Hysf2C2oaNzrvinARZemMXobrVWq9rDzdQ7Q_dnp3fginl6fT8ajaayzlIqYCMFxVYRSlcAUeMm1yDhnFae8UKrMS1VpRgrFNS5FmmaqUIkIdRckZ5hWdID2l7nWd0Z6bTrQj9q2LehOEsbyjOYBHS7RzNnnHnwnG-M11HXowfZeJqkgIsWUs0AP_tAn27s2tCCTjOSchb8XarhU2lnvHVRy5kyj3FwSLBd7kIs9yJ89hAd7X7F90UD5w78HH4BYghdTw_yfODm6mpz-hn8CFQuS0A</recordid><startdate>20210426</startdate><enddate>20210426</enddate><creator>Li, Longyu</creator><creator>Lin, Qianming</creator><creator>Tang, Miao</creator><creator>Tsai, Esther H. R.</creator><creator>Ke, Chenfeng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4689-8923</orcidid><orcidid>https://orcid.org/0000-0002-3225-0229</orcidid><orcidid>https://orcid.org/0000000232250229</orcidid><orcidid>https://orcid.org/0000000246898923</orcidid><orcidid>https://orcid.org/0000000258856317</orcidid></search><sort><creationdate>20210426</creationdate><title>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</title><author>Li, Longyu ; Lin, Qianming ; Tang, Miao ; Tsai, Esther H. R. ; Ke, Chenfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Adaptability</topic><topic>biomimicry</topic><topic>Copolymers</topic><topic>Crosslinking</topic><topic>Cyclodextrin</topic><topic>Cyclodextrins</topic><topic>Design</topic><topic>Fabrication</topic><topic>Graft copolymers</topic><topic>Hydrogels</topic><topic>Invertebrates</topic><topic>Marine animals</topic><topic>Marine organisms</topic><topic>MATERIALS SCIENCE</topic><topic>mechanically adaptive hydrogels</topic><topic>Polyethylene glycol</topic><topic>polypseudorotaxane</topic><topic>slide-ring gels</topic><topic>Stiffness</topic><topic>Tensile strain</topic><topic>Three dimensional printing</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Longyu</creatorcontrib><creatorcontrib>Lin, Qianming</creatorcontrib><creatorcontrib>Tang, Miao</creatorcontrib><creatorcontrib>Tsai, Esther H. R.</creatorcontrib><creatorcontrib>Ke, Chenfeng</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Longyu</au><au>Lin, Qianming</au><au>Tang, Miao</au><au>Tsai, Esther H. R.</au><au>Ke, Chenfeng</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-04-26</date><risdate>2021</risdate><volume>60</volume><issue>18</issue><spage>10186</spage><epage>10193</epage><pages>10186-10193</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes.
Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33606898</pmid><doi>10.1002/anie.202017019</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-4689-8923</orcidid><orcidid>https://orcid.org/0000-0002-3225-0229</orcidid><orcidid>https://orcid.org/0000000232250229</orcidid><orcidid>https://orcid.org/0000000246898923</orcidid><orcidid>https://orcid.org/0000000258856317</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2021-04, Vol.60 (18), p.10186-10193 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_1776536 |
source | Wiley |
subjects | 3-D printers 3D printing Adaptability biomimicry Copolymers Crosslinking Cyclodextrin Cyclodextrins Design Fabrication Graft copolymers Hydrogels Invertebrates Marine animals Marine organisms MATERIALS SCIENCE mechanically adaptive hydrogels Polyethylene glycol polypseudorotaxane slide-ring gels Stiffness Tensile strain Three dimensional printing Vegetables |
title | An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrated%20Design%20of%20a%20Polypseudorotaxane%E2%80%90Based%20Sea%20Cucumber%20Mimic&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Li,%20Longyu&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2021-04-26&rft.volume=60&rft.issue=18&rft.spage=10186&rft.epage=10193&rft.pages=10186-10193&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202017019&rft_dat=%3Cproquest_osti_%3E2516870287%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2516870287&rft_id=info:pmid/33606898&rfr_iscdi=true |