Loading…

An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic

The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes w...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie (International ed.) 2021-04, Vol.60 (18), p.10186-10193
Main Authors: Li, Longyu, Lin, Qianming, Tang, Miao, Tsai, Esther H. R., Ke, Chenfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3
cites cdi_FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3
container_end_page 10193
container_issue 18
container_start_page 10186
container_title Angewandte Chemie (International ed.)
container_volume 60
creator Li, Longyu
Lin, Qianming
Tang, Miao
Tsai, Esther H. R.
Ke, Chenfeng
description The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes. Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations.
doi_str_mv 10.1002/anie.202017019
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1776536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516870287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3</originalsourceid><addsrcrecordid>eNqF0blOwzAYB3ALgTgKKyOKYGFJseMktsdSrkrlkIDZcpwvYJTExU4E3XgEnpEnwVU5JBYme_j57-9AaJfgIcE4OVKtgWGCE0wYJmIFbZIsITFljK6Ge0ppzHhGNtCW90_Bc47zdbRBaY5zLvgmOh-10aTt4MGpDsroBLx5aCNbRSq6sfV85qEvrbOdelUtfLy9Hysf2C2oaNzrvinARZemMXobrVWq9rDzdQ7Q_dnp3fginl6fT8ajaayzlIqYCMFxVYRSlcAUeMm1yDhnFae8UKrMS1VpRgrFNS5FmmaqUIkIdRckZ5hWdID2l7nWd0Z6bTrQj9q2LehOEsbyjOYBHS7RzNnnHnwnG-M11HXowfZeJqkgIsWUs0AP_tAn27s2tCCTjOSchb8XarhU2lnvHVRy5kyj3FwSLBd7kIs9yJ89hAd7X7F90UD5w78HH4BYghdTw_yfODm6mpz-hn8CFQuS0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516870287</pqid></control><display><type>article</type><title>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</title><source>Wiley</source><creator>Li, Longyu ; Lin, Qianming ; Tang, Miao ; Tsai, Esther H. R. ; Ke, Chenfeng</creator><creatorcontrib>Li, Longyu ; Lin, Qianming ; Tang, Miao ; Tsai, Esther H. R. ; Ke, Chenfeng ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes. Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202017019</identifier><identifier>PMID: 33606898</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; 3D printing ; Adaptability ; biomimicry ; Copolymers ; Crosslinking ; Cyclodextrin ; Cyclodextrins ; Design ; Fabrication ; Graft copolymers ; Hydrogels ; Invertebrates ; Marine animals ; Marine organisms ; MATERIALS SCIENCE ; mechanically adaptive hydrogels ; Polyethylene glycol ; polypseudorotaxane ; slide-ring gels ; Stiffness ; Tensile strain ; Three dimensional printing ; Vegetables</subject><ispartof>Angewandte Chemie (International ed.), 2021-04, Vol.60 (18), p.10186-10193</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3</citedby><cites>FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3</cites><orcidid>0000-0002-4689-8923 ; 0000-0002-3225-0229 ; 0000000232250229 ; 0000000246898923 ; 0000000258856317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33606898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1776536$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Longyu</creatorcontrib><creatorcontrib>Lin, Qianming</creatorcontrib><creatorcontrib>Tang, Miao</creatorcontrib><creatorcontrib>Tsai, Esther H. R.</creatorcontrib><creatorcontrib>Ke, Chenfeng</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes. Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Adaptability</subject><subject>biomimicry</subject><subject>Copolymers</subject><subject>Crosslinking</subject><subject>Cyclodextrin</subject><subject>Cyclodextrins</subject><subject>Design</subject><subject>Fabrication</subject><subject>Graft copolymers</subject><subject>Hydrogels</subject><subject>Invertebrates</subject><subject>Marine animals</subject><subject>Marine organisms</subject><subject>MATERIALS SCIENCE</subject><subject>mechanically adaptive hydrogels</subject><subject>Polyethylene glycol</subject><subject>polypseudorotaxane</subject><subject>slide-ring gels</subject><subject>Stiffness</subject><subject>Tensile strain</subject><subject>Three dimensional printing</subject><subject>Vegetables</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0blOwzAYB3ALgTgKKyOKYGFJseMktsdSrkrlkIDZcpwvYJTExU4E3XgEnpEnwVU5JBYme_j57-9AaJfgIcE4OVKtgWGCE0wYJmIFbZIsITFljK6Ge0ppzHhGNtCW90_Bc47zdbRBaY5zLvgmOh-10aTt4MGpDsroBLx5aCNbRSq6sfV85qEvrbOdelUtfLy9Hysf2C2oaNzrvinARZemMXobrVWq9rDzdQ7Q_dnp3fginl6fT8ajaayzlIqYCMFxVYRSlcAUeMm1yDhnFae8UKrMS1VpRgrFNS5FmmaqUIkIdRckZ5hWdID2l7nWd0Z6bTrQj9q2LehOEsbyjOYBHS7RzNnnHnwnG-M11HXowfZeJqkgIsWUs0AP_tAn27s2tCCTjOSchb8XarhU2lnvHVRy5kyj3FwSLBd7kIs9yJ89hAd7X7F90UD5w78HH4BYghdTw_yfODm6mpz-hn8CFQuS0A</recordid><startdate>20210426</startdate><enddate>20210426</enddate><creator>Li, Longyu</creator><creator>Lin, Qianming</creator><creator>Tang, Miao</creator><creator>Tsai, Esther H. R.</creator><creator>Ke, Chenfeng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4689-8923</orcidid><orcidid>https://orcid.org/0000-0002-3225-0229</orcidid><orcidid>https://orcid.org/0000000232250229</orcidid><orcidid>https://orcid.org/0000000246898923</orcidid><orcidid>https://orcid.org/0000000258856317</orcidid></search><sort><creationdate>20210426</creationdate><title>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</title><author>Li, Longyu ; Lin, Qianming ; Tang, Miao ; Tsai, Esther H. R. ; Ke, Chenfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Adaptability</topic><topic>biomimicry</topic><topic>Copolymers</topic><topic>Crosslinking</topic><topic>Cyclodextrin</topic><topic>Cyclodextrins</topic><topic>Design</topic><topic>Fabrication</topic><topic>Graft copolymers</topic><topic>Hydrogels</topic><topic>Invertebrates</topic><topic>Marine animals</topic><topic>Marine organisms</topic><topic>MATERIALS SCIENCE</topic><topic>mechanically adaptive hydrogels</topic><topic>Polyethylene glycol</topic><topic>polypseudorotaxane</topic><topic>slide-ring gels</topic><topic>Stiffness</topic><topic>Tensile strain</topic><topic>Three dimensional printing</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Longyu</creatorcontrib><creatorcontrib>Lin, Qianming</creatorcontrib><creatorcontrib>Tang, Miao</creatorcontrib><creatorcontrib>Tsai, Esther H. R.</creatorcontrib><creatorcontrib>Ke, Chenfeng</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Longyu</au><au>Lin, Qianming</au><au>Tang, Miao</au><au>Tsai, Esther H. R.</au><au>Ke, Chenfeng</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-04-26</date><risdate>2021</risdate><volume>60</volume><issue>18</issue><spage>10186</spage><epage>10193</epage><pages>10186-10193</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The development of integrated systems that mimic the multi‐stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano‐to‐macroscale properties. A series of polyethylene glycol (PEG)‐based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α‐cyclodextrins (α‐CDs). By tailoring the copolymers’ molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo‐crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic‐to‐plastic variations upon α‐CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi‐stage stiffness changes. Cyclodextrin‐triggered stiffening: A sidechain polypseudorotaxane‐based sea cucumber mimic was designed from molecular entities, which exhibited multi‐stage shape persistence and stiffness variations.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33606898</pmid><doi>10.1002/anie.202017019</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-4689-8923</orcidid><orcidid>https://orcid.org/0000-0002-3225-0229</orcidid><orcidid>https://orcid.org/0000000232250229</orcidid><orcidid>https://orcid.org/0000000246898923</orcidid><orcidid>https://orcid.org/0000000258856317</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2021-04, Vol.60 (18), p.10186-10193
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1776536
source Wiley
subjects 3-D printers
3D printing
Adaptability
biomimicry
Copolymers
Crosslinking
Cyclodextrin
Cyclodextrins
Design
Fabrication
Graft copolymers
Hydrogels
Invertebrates
Marine animals
Marine organisms
MATERIALS SCIENCE
mechanically adaptive hydrogels
Polyethylene glycol
polypseudorotaxane
slide-ring gels
Stiffness
Tensile strain
Three dimensional printing
Vegetables
title An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrated%20Design%20of%20a%20Polypseudorotaxane%E2%80%90Based%20Sea%20Cucumber%20Mimic&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Li,%20Longyu&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2021-04-26&rft.volume=60&rft.issue=18&rft.spage=10186&rft.epage=10193&rft.pages=10186-10193&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202017019&rft_dat=%3Cproquest_osti_%3E2516870287%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5439-19980fb019a903e8d8c95887f838baad6dafc71ba8c0d9445aba29028b16703f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2516870287&rft_id=info:pmid/33606898&rfr_iscdi=true