Loading…

Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison

A three-dimensional (3D) peridynamics (PD) model of crystal plasticity (CP) is presented for predicting the fine-scale localization in polycrystalline microstructures undergoing elastoplastic deformation. Microscale data from electron microscopy and digital image correlation have indicated that slip...

Full description

Saved in:
Bibliographic Details
Published in:International journal of plasticity 2021-07, Vol.142 (C), p.102991, Article 102991
Main Authors: Lakshmanan, Aaditya, Luo, Jiangyi, Javaheri, Iman, Sundararaghavan, Veera
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-b4f02e6ecf15f865aaf50396edca21111e83384f77ac187e5b9258981e800eca3
cites cdi_FETCH-LOGICAL-c407t-b4f02e6ecf15f865aaf50396edca21111e83384f77ac187e5b9258981e800eca3
container_end_page
container_issue C
container_start_page 102991
container_title International journal of plasticity
container_volume 142
creator Lakshmanan, Aaditya
Luo, Jiangyi
Javaheri, Iman
Sundararaghavan, Veera
description A three-dimensional (3D) peridynamics (PD) model of crystal plasticity (CP) is presented for predicting the fine-scale localization in polycrystalline microstructures undergoing elastoplastic deformation. Microscale data from electron microscopy and digital image correlation have indicated that slip localizations arise early in deformation and act as precursors to mechanical failure and fracture. However, classical numerical approaches such as crystal plasticity finite element methods (CPFEM) are generally unable to predict the emergence and distribution of such localizations. Alternatively, the PD formulation has attracted significant attention for its unique treatment of deformation in the presence of high strain gradient fields. In this paper, a mesh-free non-ordinary state-based PD technique is developed for simulating the elasto-plastic deformation of 3D polycrystalline aggregates of a magnesium alloy. This work presents the details of 3D polycrystal plasticity modeling using PD theory with experimental and CPFEM comparisons. The results from this model are validated against published experimental data for the stress-strain response and texture evolution. The crystal plasticity peridynamic (CPPD) models are successful in simulating grain averaged strains seen in the experiment and depict well-resolved regions of strain localization.
doi_str_mv 10.1016/j.ijplas.2021.102991
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1779984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641921000668</els_id><sourcerecordid>2550684164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-b4f02e6ecf15f865aaf50396edca21111e83384f77ac187e5b9258981e800eca3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPBQ9d03apE0ugohfsOBlPYds-uqmdJOapGL_vSn17Ls8eDNvmBmErgneEEyqu25juqFXYVPggqRTIQQ5QSvCa5EXhNFTtMI1FXlFiThHFyF0GGPGS7JC7e7gAfLGHMEG46zqM-2nENOeFaPRJk5ZMMexVzHhIRuDsZ_ZAN40k1VHo0MWD-D8lCnbZPAzI0lsVtDuOChvgrOX6KxVfYCrv71GH89Pu8fXfPv-8vb4sM01xXXM97TFBVSgW8JaXjGlWoZLUUGjVUHSAC9LTtu6VjqlA7YXBeOCpzvGoFW5RjeLrkvWZUjmQR-0sxZ0lKSuheA0kW4X0uDd1wghys6NPkUPsmAMV5ySambRhaW9C8FDK4cUTPlJEizn2mUnl9rlXLtcak9v98sbpJjfBvzsAqyGxvjZROPM_wK_Ll2PcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550684164</pqid></control><display><type>article</type><title>Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison</title><source>ScienceDirect Freedom Collection</source><creator>Lakshmanan, Aaditya ; Luo, Jiangyi ; Javaheri, Iman ; Sundararaghavan, Veera</creator><creatorcontrib>Lakshmanan, Aaditya ; Luo, Jiangyi ; Javaheri, Iman ; Sundararaghavan, Veera</creatorcontrib><description>A three-dimensional (3D) peridynamics (PD) model of crystal plasticity (CP) is presented for predicting the fine-scale localization in polycrystalline microstructures undergoing elastoplastic deformation. Microscale data from electron microscopy and digital image correlation have indicated that slip localizations arise early in deformation and act as precursors to mechanical failure and fracture. However, classical numerical approaches such as crystal plasticity finite element methods (CPFEM) are generally unable to predict the emergence and distribution of such localizations. Alternatively, the PD formulation has attracted significant attention for its unique treatment of deformation in the presence of high strain gradient fields. In this paper, a mesh-free non-ordinary state-based PD technique is developed for simulating the elasto-plastic deformation of 3D polycrystalline aggregates of a magnesium alloy. This work presents the details of 3D polycrystal plasticity modeling using PD theory with experimental and CPFEM comparisons. The results from this model are validated against published experimental data for the stress-strain response and texture evolution. The crystal plasticity peridynamic (CPPD) models are successful in simulating grain averaged strains seen in the experiment and depict well-resolved regions of strain localization.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2021.102991</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Continuum mechanics ; Crystal plasticity ; Crystals ; Digital imaging ; Elastoplasticity ; Finite element method ; Localization ; Magnesium base alloys ; Meshless methods ; Peridynamics ; Plastic deformation ; Plastic properties ; Polycrystalline microstructure ; Polycrystals ; Simulation ; Strain localization ; Three dimensional models</subject><ispartof>International journal of plasticity, 2021-07, Vol.142 (C), p.102991, Article 102991</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-b4f02e6ecf15f865aaf50396edca21111e83384f77ac187e5b9258981e800eca3</citedby><cites>FETCH-LOGICAL-c407t-b4f02e6ecf15f865aaf50396edca21111e83384f77ac187e5b9258981e800eca3</cites><orcidid>0000-0002-1213-7958 ; 0000-0002-0484-5196 ; 0000-0001-6071-2817 ; 0000-0001-6101-0497 ; 0000000204845196 ; 0000000160712817 ; 0000000161010497 ; 0000000212137958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1779984$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakshmanan, Aaditya</creatorcontrib><creatorcontrib>Luo, Jiangyi</creatorcontrib><creatorcontrib>Javaheri, Iman</creatorcontrib><creatorcontrib>Sundararaghavan, Veera</creatorcontrib><title>Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison</title><title>International journal of plasticity</title><description>A three-dimensional (3D) peridynamics (PD) model of crystal plasticity (CP) is presented for predicting the fine-scale localization in polycrystalline microstructures undergoing elastoplastic deformation. Microscale data from electron microscopy and digital image correlation have indicated that slip localizations arise early in deformation and act as precursors to mechanical failure and fracture. However, classical numerical approaches such as crystal plasticity finite element methods (CPFEM) are generally unable to predict the emergence and distribution of such localizations. Alternatively, the PD formulation has attracted significant attention for its unique treatment of deformation in the presence of high strain gradient fields. In this paper, a mesh-free non-ordinary state-based PD technique is developed for simulating the elasto-plastic deformation of 3D polycrystalline aggregates of a magnesium alloy. This work presents the details of 3D polycrystal plasticity modeling using PD theory with experimental and CPFEM comparisons. The results from this model are validated against published experimental data for the stress-strain response and texture evolution. The crystal plasticity peridynamic (CPPD) models are successful in simulating grain averaged strains seen in the experiment and depict well-resolved regions of strain localization.</description><subject>Continuum mechanics</subject><subject>Crystal plasticity</subject><subject>Crystals</subject><subject>Digital imaging</subject><subject>Elastoplasticity</subject><subject>Finite element method</subject><subject>Localization</subject><subject>Magnesium base alloys</subject><subject>Meshless methods</subject><subject>Peridynamics</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><subject>Polycrystalline microstructure</subject><subject>Polycrystals</subject><subject>Simulation</subject><subject>Strain localization</subject><subject>Three dimensional models</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPBQ9d03apE0ugohfsOBlPYds-uqmdJOapGL_vSn17Ls8eDNvmBmErgneEEyqu25juqFXYVPggqRTIQQ5QSvCa5EXhNFTtMI1FXlFiThHFyF0GGPGS7JC7e7gAfLGHMEG46zqM-2nENOeFaPRJk5ZMMexVzHhIRuDsZ_ZAN40k1VHo0MWD-D8lCnbZPAzI0lsVtDuOChvgrOX6KxVfYCrv71GH89Pu8fXfPv-8vb4sM01xXXM97TFBVSgW8JaXjGlWoZLUUGjVUHSAC9LTtu6VjqlA7YXBeOCpzvGoFW5RjeLrkvWZUjmQR-0sxZ0lKSuheA0kW4X0uDd1wghys6NPkUPsmAMV5ySambRhaW9C8FDK4cUTPlJEizn2mUnl9rlXLtcak9v98sbpJjfBvzsAqyGxvjZROPM_wK_Ll2PcA</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Lakshmanan, Aaditya</creator><creator>Luo, Jiangyi</creator><creator>Javaheri, Iman</creator><creator>Sundararaghavan, Veera</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1213-7958</orcidid><orcidid>https://orcid.org/0000-0002-0484-5196</orcidid><orcidid>https://orcid.org/0000-0001-6071-2817</orcidid><orcidid>https://orcid.org/0000-0001-6101-0497</orcidid><orcidid>https://orcid.org/0000000204845196</orcidid><orcidid>https://orcid.org/0000000160712817</orcidid><orcidid>https://orcid.org/0000000161010497</orcidid><orcidid>https://orcid.org/0000000212137958</orcidid></search><sort><creationdate>202107</creationdate><title>Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison</title><author>Lakshmanan, Aaditya ; Luo, Jiangyi ; Javaheri, Iman ; Sundararaghavan, Veera</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-b4f02e6ecf15f865aaf50396edca21111e83384f77ac187e5b9258981e800eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Continuum mechanics</topic><topic>Crystal plasticity</topic><topic>Crystals</topic><topic>Digital imaging</topic><topic>Elastoplasticity</topic><topic>Finite element method</topic><topic>Localization</topic><topic>Magnesium base alloys</topic><topic>Meshless methods</topic><topic>Peridynamics</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><topic>Polycrystalline microstructure</topic><topic>Polycrystals</topic><topic>Simulation</topic><topic>Strain localization</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmanan, Aaditya</creatorcontrib><creatorcontrib>Luo, Jiangyi</creatorcontrib><creatorcontrib>Javaheri, Iman</creatorcontrib><creatorcontrib>Sundararaghavan, Veera</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmanan, Aaditya</au><au>Luo, Jiangyi</au><au>Javaheri, Iman</au><au>Sundararaghavan, Veera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison</atitle><jtitle>International journal of plasticity</jtitle><date>2021-07</date><risdate>2021</risdate><volume>142</volume><issue>C</issue><spage>102991</spage><pages>102991-</pages><artnum>102991</artnum><issn>0749-6419</issn><eissn>1879-2154</eissn><abstract>A three-dimensional (3D) peridynamics (PD) model of crystal plasticity (CP) is presented for predicting the fine-scale localization in polycrystalline microstructures undergoing elastoplastic deformation. Microscale data from electron microscopy and digital image correlation have indicated that slip localizations arise early in deformation and act as precursors to mechanical failure and fracture. However, classical numerical approaches such as crystal plasticity finite element methods (CPFEM) are generally unable to predict the emergence and distribution of such localizations. Alternatively, the PD formulation has attracted significant attention for its unique treatment of deformation in the presence of high strain gradient fields. In this paper, a mesh-free non-ordinary state-based PD technique is developed for simulating the elasto-plastic deformation of 3D polycrystalline aggregates of a magnesium alloy. This work presents the details of 3D polycrystal plasticity modeling using PD theory with experimental and CPFEM comparisons. The results from this model are validated against published experimental data for the stress-strain response and texture evolution. The crystal plasticity peridynamic (CPPD) models are successful in simulating grain averaged strains seen in the experiment and depict well-resolved regions of strain localization.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2021.102991</doi><orcidid>https://orcid.org/0000-0002-1213-7958</orcidid><orcidid>https://orcid.org/0000-0002-0484-5196</orcidid><orcidid>https://orcid.org/0000-0001-6071-2817</orcidid><orcidid>https://orcid.org/0000-0001-6101-0497</orcidid><orcidid>https://orcid.org/0000000204845196</orcidid><orcidid>https://orcid.org/0000000160712817</orcidid><orcidid>https://orcid.org/0000000161010497</orcidid><orcidid>https://orcid.org/0000000212137958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0749-6419
ispartof International journal of plasticity, 2021-07, Vol.142 (C), p.102991, Article 102991
issn 0749-6419
1879-2154
language eng
recordid cdi_osti_scitechconnect_1779984
source ScienceDirect Freedom Collection
subjects Continuum mechanics
Crystal plasticity
Crystals
Digital imaging
Elastoplasticity
Finite element method
Localization
Magnesium base alloys
Meshless methods
Peridynamics
Plastic deformation
Plastic properties
Polycrystalline microstructure
Polycrystals
Simulation
Strain localization
Three dimensional models
title Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20crystal%20plasticity%20simulations%20using%20peridynamics%20theory%20and%20experimental%20comparison&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Lakshmanan,%20Aaditya&rft.date=2021-07&rft.volume=142&rft.issue=C&rft.spage=102991&rft.pages=102991-&rft.artnum=102991&rft.issn=0749-6419&rft.eissn=1879-2154&rft_id=info:doi/10.1016/j.ijplas.2021.102991&rft_dat=%3Cproquest_osti_%3E2550684164%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-b4f02e6ecf15f865aaf50396edca21111e83384f77ac187e5b9258981e800eca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550684164&rft_id=info:pmid/&rfr_iscdi=true