Loading…

Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams

An alternative option for treating anion-enriched reprocessed nuclear waste streams is to immobilize technetium-99 (99Tc, β = 293.7 keV, t 1/2 = 2.1 × 105 years) and other anions in micro- and mesoporous materials. Here we determine the thermodynamic stability of anion bearing sodalites, Na8Al6Si6O2...

Full description

Saved in:
Bibliographic Details
Published in:ACS earth and space chemistry 2020-11, Vol.4 (11), p.2153-2161
Main Authors: Lilova, Kristina, Pierce, Eric M, Wu, Lili, Jubb, Aaron M, Subramani, Tamilarasan, Navrotsky, Alexandra
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2161
container_issue 11
container_start_page 2153
container_title ACS earth and space chemistry
container_volume 4
creator Lilova, Kristina
Pierce, Eric M
Wu, Lili
Jubb, Aaron M
Subramani, Tamilarasan
Navrotsky, Alexandra
description An alternative option for treating anion-enriched reprocessed nuclear waste streams is to immobilize technetium-99 (99Tc, β = 293.7 keV, t 1/2 = 2.1 × 105 years) and other anions in micro- and mesoporous materials. Here we determine the thermodynamic stability of anion bearing sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I), to improve our understanding of the driving forces that control framework assembly using high temperature oxide melt solution calorimetry. Raman and FTIR spectroscopy illustrate a strong dependence for vibrational features on anion size and enabled the development of a linear model that predicted the vibrational features for numerous anion bearing sodalites to within ±20 cm–1 (i.e., OH, F, Br, ClO4, NO3, and MnO4). The largest negative enthalpy of formation from elements and the lack of structural water demonstrate that the perrhenate sodalite (Na8Al6Si6O24[ReO4]2), a chemical analogue for pertechnetate sodalite (Na8Al6Si6O24[TcO4]2), is more thermodynamically stable than all other anion bearing sodalites evaluated. The enthalpies of the reaction between nepheline and the sodium salt, which provides the guest anion species, was negative only for the ReO4 and NO3 bearing sodalites. We report for the first time the enthalpy of the ion exchange reactions for different anion bearing sodalites relative to the perrhenate sodalite, which is a key step in gaining the ability to tune sodalite material properties and structure during treatment and the immobilization of 99Tc in the presence of competing anions.
doi_str_mv 10.1021/acsearthspacechem.0c00244
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1782049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b211911507</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-9a7fcaa3afe5cde431f49a8fc1450e04143bd967bc7621fe27cd2fbfbe910d8a3</originalsourceid><addsrcrecordid>eNplkM9OwkAQhxujiQR5h9GTJhR3t0v_mHhAgkpCwFiM3JrpdhZKypZ0l_fwkS2Bg4mXmTn8ZubL53m3nA04E_wRlSVs3MbuUZHa0G7AFGNCyguvI2Qk_EAOxeWf-drrWbtljPEkCGIWd7yfiaFmTa5UFmoNKVbOf2mPlmYNaV1gVTqyfZhjPKrCtAwXQq4E3K_gGdKF7MMnHeu46sP04QlGsGwI3Y6Mg8XelbUBXTfwQY1r-Qw5dORPTFO2sAXMD6pqX8E3WkeQunZ1Z2-8K42Vpd65d72v18ly_O7PFm_T8Wjmo4gS5ycYaYUYoKahKkgGXMsEY624HDJikssgL5IwylUUCq5JRKoQOtc5JZwVMQZd7-50t7auzKwqj4SqNoaUy3gUCyaTNjQ8hVrT2bY-NKZFyjjLjvqzf_qzs_7gF_DxfOk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lilova, Kristina ; Pierce, Eric M ; Wu, Lili ; Jubb, Aaron M ; Subramani, Tamilarasan ; Navrotsky, Alexandra</creator><creatorcontrib>Lilova, Kristina ; Pierce, Eric M ; Wu, Lili ; Jubb, Aaron M ; Subramani, Tamilarasan ; Navrotsky, Alexandra ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>An alternative option for treating anion-enriched reprocessed nuclear waste streams is to immobilize technetium-99 (99Tc, β = 293.7 keV, t 1/2 = 2.1 × 105 years) and other anions in micro- and mesoporous materials. Here we determine the thermodynamic stability of anion bearing sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I), to improve our understanding of the driving forces that control framework assembly using high temperature oxide melt solution calorimetry. Raman and FTIR spectroscopy illustrate a strong dependence for vibrational features on anion size and enabled the development of a linear model that predicted the vibrational features for numerous anion bearing sodalites to within ±20 cm–1 (i.e., OH, F, Br, ClO4, NO3, and MnO4). The largest negative enthalpy of formation from elements and the lack of structural water demonstrate that the perrhenate sodalite (Na8Al6Si6O24[ReO4]2), a chemical analogue for pertechnetate sodalite (Na8Al6Si6O24[TcO4]2), is more thermodynamically stable than all other anion bearing sodalites evaluated. The enthalpies of the reaction between nepheline and the sodium salt, which provides the guest anion species, was negative only for the ReO4 and NO3 bearing sodalites. We report for the first time the enthalpy of the ion exchange reactions for different anion bearing sodalites relative to the perrhenate sodalite, which is a key step in gaining the ability to tune sodalite material properties and structure during treatment and the immobilization of 99Tc in the presence of competing anions.</description><identifier>ISSN: 2472-3452</identifier><identifier>EISSN: 2472-3452</identifier><identifier>DOI: 10.1021/acsearthspacechem.0c00244</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>enthalpy of formation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; ion exchange ; perrhenate sodalite ; radioactive waste ; thermodynamics</subject><ispartof>ACS earth and space chemistry, 2020-11, Vol.4 (11), p.2153-2161</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6875-1079 ; 0000-0002-3260-0364 ; 0000-0002-4951-1931 ; 0000-0002-8121-1971 ; 0000000249511931 ; 0000000232600364 ; 0000000281211971 ; 0000000168751079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1782049$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Pierce, Eric M</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Jubb, Aaron M</creatorcontrib><creatorcontrib>Subramani, Tamilarasan</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams</title><title>ACS earth and space chemistry</title><addtitle>ACS Earth Space Chem</addtitle><description>An alternative option for treating anion-enriched reprocessed nuclear waste streams is to immobilize technetium-99 (99Tc, β = 293.7 keV, t 1/2 = 2.1 × 105 years) and other anions in micro- and mesoporous materials. Here we determine the thermodynamic stability of anion bearing sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I), to improve our understanding of the driving forces that control framework assembly using high temperature oxide melt solution calorimetry. Raman and FTIR spectroscopy illustrate a strong dependence for vibrational features on anion size and enabled the development of a linear model that predicted the vibrational features for numerous anion bearing sodalites to within ±20 cm–1 (i.e., OH, F, Br, ClO4, NO3, and MnO4). The largest negative enthalpy of formation from elements and the lack of structural water demonstrate that the perrhenate sodalite (Na8Al6Si6O24[ReO4]2), a chemical analogue for pertechnetate sodalite (Na8Al6Si6O24[TcO4]2), is more thermodynamically stable than all other anion bearing sodalites evaluated. The enthalpies of the reaction between nepheline and the sodium salt, which provides the guest anion species, was negative only for the ReO4 and NO3 bearing sodalites. We report for the first time the enthalpy of the ion exchange reactions for different anion bearing sodalites relative to the perrhenate sodalite, which is a key step in gaining the ability to tune sodalite material properties and structure during treatment and the immobilization of 99Tc in the presence of competing anions.</description><subject>enthalpy of formation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>ion exchange</subject><subject>perrhenate sodalite</subject><subject>radioactive waste</subject><subject>thermodynamics</subject><issn>2472-3452</issn><issn>2472-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNplkM9OwkAQhxujiQR5h9GTJhR3t0v_mHhAgkpCwFiM3JrpdhZKypZ0l_fwkS2Bg4mXmTn8ZubL53m3nA04E_wRlSVs3MbuUZHa0G7AFGNCyguvI2Qk_EAOxeWf-drrWbtljPEkCGIWd7yfiaFmTa5UFmoNKVbOf2mPlmYNaV1gVTqyfZhjPKrCtAwXQq4E3K_gGdKF7MMnHeu46sP04QlGsGwI3Y6Mg8XelbUBXTfwQY1r-Qw5dORPTFO2sAXMD6pqX8E3WkeQunZ1Z2-8K42Vpd65d72v18ly_O7PFm_T8Wjmo4gS5ycYaYUYoKahKkgGXMsEY624HDJikssgL5IwylUUCq5JRKoQOtc5JZwVMQZd7-50t7auzKwqj4SqNoaUy3gUCyaTNjQ8hVrT2bY-NKZFyjjLjvqzf_qzs_7gF_DxfOk</recordid><startdate>20201119</startdate><enddate>20201119</enddate><creator>Lilova, Kristina</creator><creator>Pierce, Eric M</creator><creator>Wu, Lili</creator><creator>Jubb, Aaron M</creator><creator>Subramani, Tamilarasan</creator><creator>Navrotsky, Alexandra</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6875-1079</orcidid><orcidid>https://orcid.org/0000-0002-3260-0364</orcidid><orcidid>https://orcid.org/0000-0002-4951-1931</orcidid><orcidid>https://orcid.org/0000-0002-8121-1971</orcidid><orcidid>https://orcid.org/0000000249511931</orcidid><orcidid>https://orcid.org/0000000232600364</orcidid><orcidid>https://orcid.org/0000000281211971</orcidid><orcidid>https://orcid.org/0000000168751079</orcidid></search><sort><creationdate>20201119</creationdate><title>Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams</title><author>Lilova, Kristina ; Pierce, Eric M ; Wu, Lili ; Jubb, Aaron M ; Subramani, Tamilarasan ; Navrotsky, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-9a7fcaa3afe5cde431f49a8fc1450e04143bd967bc7621fe27cd2fbfbe910d8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>enthalpy of formation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>ion exchange</topic><topic>perrhenate sodalite</topic><topic>radioactive waste</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Pierce, Eric M</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Jubb, Aaron M</creatorcontrib><creatorcontrib>Subramani, Tamilarasan</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS earth and space chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lilova, Kristina</au><au>Pierce, Eric M</au><au>Wu, Lili</au><au>Jubb, Aaron M</au><au>Subramani, Tamilarasan</au><au>Navrotsky, Alexandra</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams</atitle><jtitle>ACS earth and space chemistry</jtitle><addtitle>ACS Earth Space Chem</addtitle><date>2020-11-19</date><risdate>2020</risdate><volume>4</volume><issue>11</issue><spage>2153</spage><epage>2161</epage><pages>2153-2161</pages><issn>2472-3452</issn><eissn>2472-3452</eissn><abstract>An alternative option for treating anion-enriched reprocessed nuclear waste streams is to immobilize technetium-99 (99Tc, β = 293.7 keV, t 1/2 = 2.1 × 105 years) and other anions in micro- and mesoporous materials. Here we determine the thermodynamic stability of anion bearing sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I), to improve our understanding of the driving forces that control framework assembly using high temperature oxide melt solution calorimetry. Raman and FTIR spectroscopy illustrate a strong dependence for vibrational features on anion size and enabled the development of a linear model that predicted the vibrational features for numerous anion bearing sodalites to within ±20 cm–1 (i.e., OH, F, Br, ClO4, NO3, and MnO4). The largest negative enthalpy of formation from elements and the lack of structural water demonstrate that the perrhenate sodalite (Na8Al6Si6O24[ReO4]2), a chemical analogue for pertechnetate sodalite (Na8Al6Si6O24[TcO4]2), is more thermodynamically stable than all other anion bearing sodalites evaluated. The enthalpies of the reaction between nepheline and the sodium salt, which provides the guest anion species, was negative only for the ReO4 and NO3 bearing sodalites. We report for the first time the enthalpy of the ion exchange reactions for different anion bearing sodalites relative to the perrhenate sodalite, which is a key step in gaining the ability to tune sodalite material properties and structure during treatment and the immobilization of 99Tc in the presence of competing anions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsearthspacechem.0c00244</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6875-1079</orcidid><orcidid>https://orcid.org/0000-0002-3260-0364</orcidid><orcidid>https://orcid.org/0000-0002-4951-1931</orcidid><orcidid>https://orcid.org/0000-0002-8121-1971</orcidid><orcidid>https://orcid.org/0000000249511931</orcidid><orcidid>https://orcid.org/0000000232600364</orcidid><orcidid>https://orcid.org/0000000281211971</orcidid><orcidid>https://orcid.org/0000000168751079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2472-3452
ispartof ACS earth and space chemistry, 2020-11, Vol.4 (11), p.2153-2161
issn 2472-3452
2472-3452
language eng
recordid cdi_osti_scitechconnect_1782049
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects enthalpy of formation
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
ion exchange
perrhenate sodalite
radioactive waste
thermodynamics
title Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetics%20of%20Salt-Bearing%20Sodalites,%20Na8Al6Si6O24X2%20(X%20=%20SO4,%20ReO4,%20Cl,%20I):%20A%20Treatment%20Option%20for%20Pertechnetate-Enriched%20Nuclear%20Waste%20Streams&rft.jtitle=ACS%20earth%20and%20space%20chemistry&rft.au=Lilova,%20Kristina&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-11-19&rft.volume=4&rft.issue=11&rft.spage=2153&rft.epage=2161&rft.pages=2153-2161&rft.issn=2472-3452&rft.eissn=2472-3452&rft_id=info:doi/10.1021/acsearthspacechem.0c00244&rft_dat=%3Cacs_osti_%3Eb211911507%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a279t-9a7fcaa3afe5cde431f49a8fc1450e04143bd967bc7621fe27cd2fbfbe910d8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true