Loading…
Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams
An alternative option for treating anion-enriched reprocessed nuclear waste streams is to immobilize technetium-99 (99Tc, β = 293.7 keV, t 1/2 = 2.1 × 105 years) and other anions in micro- and mesoporous materials. Here we determine the thermodynamic stability of anion bearing sodalites, Na8Al6Si6O2...
Saved in:
Published in: | ACS earth and space chemistry 2020-11, Vol.4 (11), p.2153-2161 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2161 |
container_issue | 11 |
container_start_page | 2153 |
container_title | ACS earth and space chemistry |
container_volume | 4 |
creator | Lilova, Kristina Pierce, Eric M Wu, Lili Jubb, Aaron M Subramani, Tamilarasan Navrotsky, Alexandra |
description | An alternative option for treating anion-enriched reprocessed nuclear waste streams is to immobilize technetium-99 (99Tc, β = 293.7 keV, t 1/2 = 2.1 × 105 years) and other anions in micro- and mesoporous materials. Here we determine the thermodynamic stability of anion bearing sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I), to improve our understanding of the driving forces that control framework assembly using high temperature oxide melt solution calorimetry. Raman and FTIR spectroscopy illustrate a strong dependence for vibrational features on anion size and enabled the development of a linear model that predicted the vibrational features for numerous anion bearing sodalites to within ±20 cm–1 (i.e., OH, F, Br, ClO4, NO3, and MnO4). The largest negative enthalpy of formation from elements and the lack of structural water demonstrate that the perrhenate sodalite (Na8Al6Si6O24[ReO4]2), a chemical analogue for pertechnetate sodalite (Na8Al6Si6O24[TcO4]2), is more thermodynamically stable than all other anion bearing sodalites evaluated. The enthalpies of the reaction between nepheline and the sodium salt, which provides the guest anion species, was negative only for the ReO4 and NO3 bearing sodalites. We report for the first time the enthalpy of the ion exchange reactions for different anion bearing sodalites relative to the perrhenate sodalite, which is a key step in gaining the ability to tune sodalite material properties and structure during treatment and the immobilization of 99Tc in the presence of competing anions. |
doi_str_mv | 10.1021/acsearthspacechem.0c00244 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1782049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b211911507</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-9a7fcaa3afe5cde431f49a8fc1450e04143bd967bc7621fe27cd2fbfbe910d8a3</originalsourceid><addsrcrecordid>eNplkM9OwkAQhxujiQR5h9GTJhR3t0v_mHhAgkpCwFiM3JrpdhZKypZ0l_fwkS2Bg4mXmTn8ZubL53m3nA04E_wRlSVs3MbuUZHa0G7AFGNCyguvI2Qk_EAOxeWf-drrWbtljPEkCGIWd7yfiaFmTa5UFmoNKVbOf2mPlmYNaV1gVTqyfZhjPKrCtAwXQq4E3K_gGdKF7MMnHeu46sP04QlGsGwI3Y6Mg8XelbUBXTfwQY1r-Qw5dORPTFO2sAXMD6pqX8E3WkeQunZ1Z2-8K42Vpd65d72v18ly_O7PFm_T8Wjmo4gS5ycYaYUYoKahKkgGXMsEY624HDJikssgL5IwylUUCq5JRKoQOtc5JZwVMQZd7-50t7auzKwqj4SqNoaUy3gUCyaTNjQ8hVrT2bY-NKZFyjjLjvqzf_qzs_7gF_DxfOk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lilova, Kristina ; Pierce, Eric M ; Wu, Lili ; Jubb, Aaron M ; Subramani, Tamilarasan ; Navrotsky, Alexandra</creator><creatorcontrib>Lilova, Kristina ; Pierce, Eric M ; Wu, Lili ; Jubb, Aaron M ; Subramani, Tamilarasan ; Navrotsky, Alexandra ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>An alternative option for treating anion-enriched reprocessed nuclear waste streams is to immobilize technetium-99 (99Tc, β = 293.7 keV, t 1/2 = 2.1 × 105 years) and other anions in micro- and mesoporous materials. Here we determine the thermodynamic stability of anion bearing sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I), to improve our understanding of the driving forces that control framework assembly using high temperature oxide melt solution calorimetry. Raman and FTIR spectroscopy illustrate a strong dependence for vibrational features on anion size and enabled the development of a linear model that predicted the vibrational features for numerous anion bearing sodalites to within ±20 cm–1 (i.e., OH, F, Br, ClO4, NO3, and MnO4). The largest negative enthalpy of formation from elements and the lack of structural water demonstrate that the perrhenate sodalite (Na8Al6Si6O24[ReO4]2), a chemical analogue for pertechnetate sodalite (Na8Al6Si6O24[TcO4]2), is more thermodynamically stable than all other anion bearing sodalites evaluated. The enthalpies of the reaction between nepheline and the sodium salt, which provides the guest anion species, was negative only for the ReO4 and NO3 bearing sodalites. We report for the first time the enthalpy of the ion exchange reactions for different anion bearing sodalites relative to the perrhenate sodalite, which is a key step in gaining the ability to tune sodalite material properties and structure during treatment and the immobilization of 99Tc in the presence of competing anions.</description><identifier>ISSN: 2472-3452</identifier><identifier>EISSN: 2472-3452</identifier><identifier>DOI: 10.1021/acsearthspacechem.0c00244</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>enthalpy of formation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; ion exchange ; perrhenate sodalite ; radioactive waste ; thermodynamics</subject><ispartof>ACS earth and space chemistry, 2020-11, Vol.4 (11), p.2153-2161</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6875-1079 ; 0000-0002-3260-0364 ; 0000-0002-4951-1931 ; 0000-0002-8121-1971 ; 0000000249511931 ; 0000000232600364 ; 0000000281211971 ; 0000000168751079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1782049$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Pierce, Eric M</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Jubb, Aaron M</creatorcontrib><creatorcontrib>Subramani, Tamilarasan</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams</title><title>ACS earth and space chemistry</title><addtitle>ACS Earth Space Chem</addtitle><description>An alternative option for treating anion-enriched reprocessed nuclear waste streams is to immobilize technetium-99 (99Tc, β = 293.7 keV, t 1/2 = 2.1 × 105 years) and other anions in micro- and mesoporous materials. Here we determine the thermodynamic stability of anion bearing sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I), to improve our understanding of the driving forces that control framework assembly using high temperature oxide melt solution calorimetry. Raman and FTIR spectroscopy illustrate a strong dependence for vibrational features on anion size and enabled the development of a linear model that predicted the vibrational features for numerous anion bearing sodalites to within ±20 cm–1 (i.e., OH, F, Br, ClO4, NO3, and MnO4). The largest negative enthalpy of formation from elements and the lack of structural water demonstrate that the perrhenate sodalite (Na8Al6Si6O24[ReO4]2), a chemical analogue for pertechnetate sodalite (Na8Al6Si6O24[TcO4]2), is more thermodynamically stable than all other anion bearing sodalites evaluated. The enthalpies of the reaction between nepheline and the sodium salt, which provides the guest anion species, was negative only for the ReO4 and NO3 bearing sodalites. We report for the first time the enthalpy of the ion exchange reactions for different anion bearing sodalites relative to the perrhenate sodalite, which is a key step in gaining the ability to tune sodalite material properties and structure during treatment and the immobilization of 99Tc in the presence of competing anions.</description><subject>enthalpy of formation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>ion exchange</subject><subject>perrhenate sodalite</subject><subject>radioactive waste</subject><subject>thermodynamics</subject><issn>2472-3452</issn><issn>2472-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNplkM9OwkAQhxujiQR5h9GTJhR3t0v_mHhAgkpCwFiM3JrpdhZKypZ0l_fwkS2Bg4mXmTn8ZubL53m3nA04E_wRlSVs3MbuUZHa0G7AFGNCyguvI2Qk_EAOxeWf-drrWbtljPEkCGIWd7yfiaFmTa5UFmoNKVbOf2mPlmYNaV1gVTqyfZhjPKrCtAwXQq4E3K_gGdKF7MMnHeu46sP04QlGsGwI3Y6Mg8XelbUBXTfwQY1r-Qw5dORPTFO2sAXMD6pqX8E3WkeQunZ1Z2-8K42Vpd65d72v18ly_O7PFm_T8Wjmo4gS5ycYaYUYoKahKkgGXMsEY624HDJikssgL5IwylUUCq5JRKoQOtc5JZwVMQZd7-50t7auzKwqj4SqNoaUy3gUCyaTNjQ8hVrT2bY-NKZFyjjLjvqzf_qzs_7gF_DxfOk</recordid><startdate>20201119</startdate><enddate>20201119</enddate><creator>Lilova, Kristina</creator><creator>Pierce, Eric M</creator><creator>Wu, Lili</creator><creator>Jubb, Aaron M</creator><creator>Subramani, Tamilarasan</creator><creator>Navrotsky, Alexandra</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6875-1079</orcidid><orcidid>https://orcid.org/0000-0002-3260-0364</orcidid><orcidid>https://orcid.org/0000-0002-4951-1931</orcidid><orcidid>https://orcid.org/0000-0002-8121-1971</orcidid><orcidid>https://orcid.org/0000000249511931</orcidid><orcidid>https://orcid.org/0000000232600364</orcidid><orcidid>https://orcid.org/0000000281211971</orcidid><orcidid>https://orcid.org/0000000168751079</orcidid></search><sort><creationdate>20201119</creationdate><title>Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams</title><author>Lilova, Kristina ; Pierce, Eric M ; Wu, Lili ; Jubb, Aaron M ; Subramani, Tamilarasan ; Navrotsky, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-9a7fcaa3afe5cde431f49a8fc1450e04143bd967bc7621fe27cd2fbfbe910d8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>enthalpy of formation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>ion exchange</topic><topic>perrhenate sodalite</topic><topic>radioactive waste</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Pierce, Eric M</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Jubb, Aaron M</creatorcontrib><creatorcontrib>Subramani, Tamilarasan</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS earth and space chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lilova, Kristina</au><au>Pierce, Eric M</au><au>Wu, Lili</au><au>Jubb, Aaron M</au><au>Subramani, Tamilarasan</au><au>Navrotsky, Alexandra</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams</atitle><jtitle>ACS earth and space chemistry</jtitle><addtitle>ACS Earth Space Chem</addtitle><date>2020-11-19</date><risdate>2020</risdate><volume>4</volume><issue>11</issue><spage>2153</spage><epage>2161</epage><pages>2153-2161</pages><issn>2472-3452</issn><eissn>2472-3452</eissn><abstract>An alternative option for treating anion-enriched reprocessed nuclear waste streams is to immobilize technetium-99 (99Tc, β = 293.7 keV, t 1/2 = 2.1 × 105 years) and other anions in micro- and mesoporous materials. Here we determine the thermodynamic stability of anion bearing sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I), to improve our understanding of the driving forces that control framework assembly using high temperature oxide melt solution calorimetry. Raman and FTIR spectroscopy illustrate a strong dependence for vibrational features on anion size and enabled the development of a linear model that predicted the vibrational features for numerous anion bearing sodalites to within ±20 cm–1 (i.e., OH, F, Br, ClO4, NO3, and MnO4). The largest negative enthalpy of formation from elements and the lack of structural water demonstrate that the perrhenate sodalite (Na8Al6Si6O24[ReO4]2), a chemical analogue for pertechnetate sodalite (Na8Al6Si6O24[TcO4]2), is more thermodynamically stable than all other anion bearing sodalites evaluated. The enthalpies of the reaction between nepheline and the sodium salt, which provides the guest anion species, was negative only for the ReO4 and NO3 bearing sodalites. We report for the first time the enthalpy of the ion exchange reactions for different anion bearing sodalites relative to the perrhenate sodalite, which is a key step in gaining the ability to tune sodalite material properties and structure during treatment and the immobilization of 99Tc in the presence of competing anions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsearthspacechem.0c00244</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6875-1079</orcidid><orcidid>https://orcid.org/0000-0002-3260-0364</orcidid><orcidid>https://orcid.org/0000-0002-4951-1931</orcidid><orcidid>https://orcid.org/0000-0002-8121-1971</orcidid><orcidid>https://orcid.org/0000000249511931</orcidid><orcidid>https://orcid.org/0000000232600364</orcidid><orcidid>https://orcid.org/0000000281211971</orcidid><orcidid>https://orcid.org/0000000168751079</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2472-3452 |
ispartof | ACS earth and space chemistry, 2020-11, Vol.4 (11), p.2153-2161 |
issn | 2472-3452 2472-3452 |
language | eng |
recordid | cdi_osti_scitechconnect_1782049 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | enthalpy of formation INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ion exchange perrhenate sodalite radioactive waste thermodynamics |
title | Energetics of Salt-Bearing Sodalites, Na8Al6Si6O24X2 (X = SO4, ReO4, Cl, I): A Treatment Option for Pertechnetate-Enriched Nuclear Waste Streams |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetics%20of%20Salt-Bearing%20Sodalites,%20Na8Al6Si6O24X2%20(X%20=%20SO4,%20ReO4,%20Cl,%20I):%20A%20Treatment%20Option%20for%20Pertechnetate-Enriched%20Nuclear%20Waste%20Streams&rft.jtitle=ACS%20earth%20and%20space%20chemistry&rft.au=Lilova,%20Kristina&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-11-19&rft.volume=4&rft.issue=11&rft.spage=2153&rft.epage=2161&rft.pages=2153-2161&rft.issn=2472-3452&rft.eissn=2472-3452&rft_id=info:doi/10.1021/acsearthspacechem.0c00244&rft_dat=%3Cacs_osti_%3Eb211911507%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a279t-9a7fcaa3afe5cde431f49a8fc1450e04143bd967bc7621fe27cd2fbfbe910d8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |