Loading…

Water vapor oxidation of SiC layer in surrogate TRISO fuel particles

Under accidental conditions for high temperature gas-cooled reactors (HTGR), the SiC layer in tri-structural-isotropic (TRISO) fuel particles can be exposed to water vapor. In this study, oxidation behaviors of surrogate TRISO fuel particles were investigated in a He-20 vol% water vapor mixed atmosp...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part B, Engineering Engineering, 2021-06, Vol.215 (C), p.108807, Article 108807
Main Authors: Cho, Yi Je, Lu, Kathy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-7b8b1a87287e7ee7cfc5f15be59b0a941229329a1085c97d7efd42f2ed6027853
cites cdi_FETCH-LOGICAL-c399t-7b8b1a87287e7ee7cfc5f15be59b0a941229329a1085c97d7efd42f2ed6027853
container_end_page
container_issue C
container_start_page 108807
container_title Composites. Part B, Engineering
container_volume 215
creator Cho, Yi Je
Lu, Kathy
description Under accidental conditions for high temperature gas-cooled reactors (HTGR), the SiC layer in tri-structural-isotropic (TRISO) fuel particles can be exposed to water vapor. In this study, oxidation behaviors of surrogate TRISO fuel particles were investigated in a He-20 vol% water vapor mixed atmosphere at temperatures up to 1600 °C. The growth of the crystalline oxide passivation layer with cracks and pores followed a parabolic law with time, where the maximum was 2.3 μm at 1600 °C. The oxide layer and the SiC surface under the oxide became flattened with increasing temperature, as a function of the silica viscosity and the diffusion path of water vapor. Volatilization of the oxide layer was analyzed using a mechanistic model that an inert gas in oxidizing atmospheres could influence the magnitude of volatilization. The fracture load and strength of the oxidized and thinned SiC layer were numerically estimated to decrease from 2.27 to 1.69 N and from 317 to 299 MPa, respectively, with the SiC thickness decrease from 35 to 32 μm. This prediction indicates that the oxidized SiC layer should retain fission products. Additionally, the mechanical integrity of each layer in the TRISO fuel particle after oxidation was evaluated. The results in this work provide important data for the safety analysis of accidental scenarios in HTGRs. [Display omitted]
doi_str_mv 10.1016/j.compositesb.2021.108807
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1782345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836821001980</els_id><sourcerecordid>S1359836821001980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-7b8b1a87287e7ee7cfc5f15be59b0a941229329a1085c97d7efd42f2ed6027853</originalsourceid><addsrcrecordid>eNqNUMlOwzAQtRBIlMI_GO4ptrPYPqKwVapUiRZxtBxnAq7SOLLTiv49jsKBI6cZzbxF7yF0S8mCElrc7xbG7XsX7AChWjDCaLwLQfgZmlHBZUJJIc_jnuYyEWkhLtFVCDtCSJanbIYeP_QAHh917zx237bWg3Uddg3e2BK3-hSftsPh4L37jFC8fVtu1rg5QIt77QdrWgjX6KLRbYCb3zlH789P2_I1Wa1fluXDKjGplEPCK1FRLTgTHDgAN43JG5pXkMuKaJlRxmTKpI4BciN5zaGpM9YwqAvCuMjTObqbdF0YrAomhjZfxnUdmEFRLliajSA5gYx3IXhoVO_tXvuTokSNnamd-tOZGjtTU2eRW05ciCmOFvxoAp2B2vrRo3b2Hyo_7eR6yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Water vapor oxidation of SiC layer in surrogate TRISO fuel particles</title><source>ScienceDirect Freedom Collection</source><creator>Cho, Yi Je ; Lu, Kathy</creator><creatorcontrib>Cho, Yi Je ; Lu, Kathy</creatorcontrib><description>Under accidental conditions for high temperature gas-cooled reactors (HTGR), the SiC layer in tri-structural-isotropic (TRISO) fuel particles can be exposed to water vapor. In this study, oxidation behaviors of surrogate TRISO fuel particles were investigated in a He-20 vol% water vapor mixed atmosphere at temperatures up to 1600 °C. The growth of the crystalline oxide passivation layer with cracks and pores followed a parabolic law with time, where the maximum was 2.3 μm at 1600 °C. The oxide layer and the SiC surface under the oxide became flattened with increasing temperature, as a function of the silica viscosity and the diffusion path of water vapor. Volatilization of the oxide layer was analyzed using a mechanistic model that an inert gas in oxidizing atmospheres could influence the magnitude of volatilization. The fracture load and strength of the oxidized and thinned SiC layer were numerically estimated to decrease from 2.27 to 1.69 N and from 317 to 299 MPa, respectively, with the SiC thickness decrease from 35 to 32 μm. This prediction indicates that the oxidized SiC layer should retain fission products. Additionally, the mechanical integrity of each layer in the TRISO fuel particle after oxidation was evaluated. The results in this work provide important data for the safety analysis of accidental scenarios in HTGRs. [Display omitted]</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2021.108807</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Accidental condition ; Oxidation ; SiC layer ; TRISO fuel particle ; Water vapor</subject><ispartof>Composites. Part B, Engineering, 2021-06, Vol.215 (C), p.108807, Article 108807</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-7b8b1a87287e7ee7cfc5f15be59b0a941229329a1085c97d7efd42f2ed6027853</citedby><cites>FETCH-LOGICAL-c399t-7b8b1a87287e7ee7cfc5f15be59b0a941229329a1085c97d7efd42f2ed6027853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1782345$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Yi Je</creatorcontrib><creatorcontrib>Lu, Kathy</creatorcontrib><title>Water vapor oxidation of SiC layer in surrogate TRISO fuel particles</title><title>Composites. Part B, Engineering</title><description>Under accidental conditions for high temperature gas-cooled reactors (HTGR), the SiC layer in tri-structural-isotropic (TRISO) fuel particles can be exposed to water vapor. In this study, oxidation behaviors of surrogate TRISO fuel particles were investigated in a He-20 vol% water vapor mixed atmosphere at temperatures up to 1600 °C. The growth of the crystalline oxide passivation layer with cracks and pores followed a parabolic law with time, where the maximum was 2.3 μm at 1600 °C. The oxide layer and the SiC surface under the oxide became flattened with increasing temperature, as a function of the silica viscosity and the diffusion path of water vapor. Volatilization of the oxide layer was analyzed using a mechanistic model that an inert gas in oxidizing atmospheres could influence the magnitude of volatilization. The fracture load and strength of the oxidized and thinned SiC layer were numerically estimated to decrease from 2.27 to 1.69 N and from 317 to 299 MPa, respectively, with the SiC thickness decrease from 35 to 32 μm. This prediction indicates that the oxidized SiC layer should retain fission products. Additionally, the mechanical integrity of each layer in the TRISO fuel particle after oxidation was evaluated. The results in this work provide important data for the safety analysis of accidental scenarios in HTGRs. [Display omitted]</description><subject>Accidental condition</subject><subject>Oxidation</subject><subject>SiC layer</subject><subject>TRISO fuel particle</subject><subject>Water vapor</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUMlOwzAQtRBIlMI_GO4ptrPYPqKwVapUiRZxtBxnAq7SOLLTiv49jsKBI6cZzbxF7yF0S8mCElrc7xbG7XsX7AChWjDCaLwLQfgZmlHBZUJJIc_jnuYyEWkhLtFVCDtCSJanbIYeP_QAHh917zx237bWg3Uddg3e2BK3-hSftsPh4L37jFC8fVtu1rg5QIt77QdrWgjX6KLRbYCb3zlH789P2_I1Wa1fluXDKjGplEPCK1FRLTgTHDgAN43JG5pXkMuKaJlRxmTKpI4BciN5zaGpM9YwqAvCuMjTObqbdF0YrAomhjZfxnUdmEFRLliajSA5gYx3IXhoVO_tXvuTokSNnamd-tOZGjtTU2eRW05ciCmOFvxoAp2B2vrRo3b2Hyo_7eR6yg</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Cho, Yi Je</creator><creator>Lu, Kathy</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20210615</creationdate><title>Water vapor oxidation of SiC layer in surrogate TRISO fuel particles</title><author>Cho, Yi Je ; Lu, Kathy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-7b8b1a87287e7ee7cfc5f15be59b0a941229329a1085c97d7efd42f2ed6027853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accidental condition</topic><topic>Oxidation</topic><topic>SiC layer</topic><topic>TRISO fuel particle</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yi Je</creatorcontrib><creatorcontrib>Lu, Kathy</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yi Je</au><au>Lu, Kathy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water vapor oxidation of SiC layer in surrogate TRISO fuel particles</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>215</volume><issue>C</issue><spage>108807</spage><pages>108807-</pages><artnum>108807</artnum><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>Under accidental conditions for high temperature gas-cooled reactors (HTGR), the SiC layer in tri-structural-isotropic (TRISO) fuel particles can be exposed to water vapor. In this study, oxidation behaviors of surrogate TRISO fuel particles were investigated in a He-20 vol% water vapor mixed atmosphere at temperatures up to 1600 °C. The growth of the crystalline oxide passivation layer with cracks and pores followed a parabolic law with time, where the maximum was 2.3 μm at 1600 °C. The oxide layer and the SiC surface under the oxide became flattened with increasing temperature, as a function of the silica viscosity and the diffusion path of water vapor. Volatilization of the oxide layer was analyzed using a mechanistic model that an inert gas in oxidizing atmospheres could influence the magnitude of volatilization. The fracture load and strength of the oxidized and thinned SiC layer were numerically estimated to decrease from 2.27 to 1.69 N and from 317 to 299 MPa, respectively, with the SiC thickness decrease from 35 to 32 μm. This prediction indicates that the oxidized SiC layer should retain fission products. Additionally, the mechanical integrity of each layer in the TRISO fuel particle after oxidation was evaluated. The results in this work provide important data for the safety analysis of accidental scenarios in HTGRs. [Display omitted]</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2021.108807</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-8368
ispartof Composites. Part B, Engineering, 2021-06, Vol.215 (C), p.108807, Article 108807
issn 1359-8368
1879-1069
language eng
recordid cdi_osti_scitechconnect_1782345
source ScienceDirect Freedom Collection
subjects Accidental condition
Oxidation
SiC layer
TRISO fuel particle
Water vapor
title Water vapor oxidation of SiC layer in surrogate TRISO fuel particles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20vapor%20oxidation%20of%20SiC%20layer%20in%20surrogate%20TRISO%20fuel%20particles&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Cho,%20Yi%20Je&rft.date=2021-06-15&rft.volume=215&rft.issue=C&rft.spage=108807&rft.pages=108807-&rft.artnum=108807&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2021.108807&rft_dat=%3Celsevier_osti_%3ES1359836821001980%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-7b8b1a87287e7ee7cfc5f15be59b0a941229329a1085c97d7efd42f2ed6027853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true