Loading…
Advances in physics understanding of high poloidal beta regime toward steady-state operation of CFETR
Experimental and modeling investigations of the high βp scenarios on the DIII-D and EAST tokamaks show advantages in high energy confinement, avoidance of n = 1 MHD, and core-edge integration with reduced heat flux, making this scenario an attractive option for CFETR steady-state operation. Experime...
Saved in:
Published in: | Physics of plasmas 2021-04, Vol.28 (4) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 28 |
creator | Qian, J. P. Garofalo, A. M. Gong, X. Z. Huang, J. Ding, S. Y. Holcomb, C. T. Hyatt, A. Ferron, J. McClenaghan, J. McKee, G. Kotschenreuther, M. Wu, M. Q. Shi, S. Y. Li, M. H. Zhu, X. Sun, Y. W. Xu, G. S. Wang, L. Chen, J. L. Zang, Q. Zhang, B. Zhang, L. Liu, H. Q. Lyu, B. Guo, W. F. Pan, C. K. Ren, Q. Li, G. Q. Wang, H. Q. Zhang, X. J. Pinsker, R. I. Staebler, G. M. Lao, L. L. |
description | Experimental and modeling investigations of the high βp scenarios on the DIII-D and EAST tokamaks show advantages in high energy confinement, avoidance of n = 1 MHD, and core-edge integration with reduced heat flux, making this scenario an attractive option for CFETR steady-state operation. Experiments show that plasmas with high confinement and high density can be achieved with neutral beam injection on DIII-D (βp ~ 2.2, βN ~ 3.5, fBS ~ 50%, fGw ~ 1.0, H98y2 ~ 1.5) and pure RF power on EAST (βP ~ 2.0, βN ~ 1.6, fBS ~ 50%, fGw ~ 0.8, H98y2 > 1.3). By tailoring the current density profile, a q-profile with local (off-axis) negative shear is achieved that yields improved confinement and MHD stability. Transport analysis and simulation suggest that the combination of high density gradient and high Shafranov shift allows turbulence stabilization and higher confinement. Using on-axis ECH injection, tungsten accumulation is avoided on EAST, and this is reproduced in modeling. Reduced heat flux (by >40%) and maintenance of high core confinement is achieved with active feedback control of the radiated divertor, an important result for long pulse operation in tokamaks. In conclusion, the improved physics understanding and validated modeling tools are used to design a 1GW steady-state scenario for CFETR. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1783781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1783781</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17837813</originalsourceid><addsrcrecordid>eNqNi8sKwjAQRYMo-PyHwX0hpbWpSxHFtbhwJzEZ25GalM6o-Pcq-AGuzuVwT0-NUl0uE1OYvP_dRidFkR-Hasx81VrnxaIcKVz5hw0OGShAW7-YHMM9eOxYbPAUKogXqKmqoY1NJG8bOKNY6LCiG4LEp-08sKD1r-TTCEJssbNCMXzT9XZz2E_V4GIbxtmPEzX_6PUuiSx0YkeCrnYxBHRySk2ZmTLN_jq9AUYWSCs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advances in physics understanding of high poloidal beta regime toward steady-state operation of CFETR</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Qian, J. P. ; Garofalo, A. M. ; Gong, X. Z. ; Huang, J. ; Ding, S. Y. ; Holcomb, C. T. ; Hyatt, A. ; Ferron, J. ; McClenaghan, J. ; McKee, G. ; Kotschenreuther, M. ; Wu, M. Q. ; Shi, S. Y. ; Li, M. H. ; Zhu, X. ; Sun, Y. W. ; Xu, G. S. ; Wang, L. ; Chen, J. L. ; Zang, Q. ; Zhang, B. ; Zhang, L. ; Liu, H. Q. ; Lyu, B. ; Guo, W. F. ; Pan, C. K. ; Ren, Q. ; Li, G. Q. ; Wang, H. Q. ; Zhang, X. J. ; Pinsker, R. I. ; Staebler, G. M. ; Lao, L. L.</creator><creatorcontrib>Qian, J. P. ; Garofalo, A. M. ; Gong, X. Z. ; Huang, J. ; Ding, S. Y. ; Holcomb, C. T. ; Hyatt, A. ; Ferron, J. ; McClenaghan, J. ; McKee, G. ; Kotschenreuther, M. ; Wu, M. Q. ; Shi, S. Y. ; Li, M. H. ; Zhu, X. ; Sun, Y. W. ; Xu, G. S. ; Wang, L. ; Chen, J. L. ; Zang, Q. ; Zhang, B. ; Zhang, L. ; Liu, H. Q. ; Lyu, B. ; Guo, W. F. ; Pan, C. K. ; Ren, Q. ; Li, G. Q. ; Wang, H. Q. ; Zhang, X. J. ; Pinsker, R. I. ; Staebler, G. M. ; Lao, L. L. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; General Atomics, San Diego, CA (United States)</creatorcontrib><description>Experimental and modeling investigations of the high βp scenarios on the DIII-D and EAST tokamaks show advantages in high energy confinement, avoidance of n = 1 MHD, and core-edge integration with reduced heat flux, making this scenario an attractive option for CFETR steady-state operation. Experiments show that plasmas with high confinement and high density can be achieved with neutral beam injection on DIII-D (βp ~ 2.2, βN ~ 3.5, fBS ~ 50%, fGw ~ 1.0, H98y2 ~ 1.5) and pure RF power on EAST (βP ~ 2.0, βN ~ 1.6, fBS ~ 50%, fGw ~ 0.8, H98y2 > 1.3). By tailoring the current density profile, a q-profile with local (off-axis) negative shear is achieved that yields improved confinement and MHD stability. Transport analysis and simulation suggest that the combination of high density gradient and high Shafranov shift allows turbulence stabilization and higher confinement. Using on-axis ECH injection, tungsten accumulation is avoided on EAST, and this is reproduced in modeling. Reduced heat flux (by >40%) and maintenance of high core confinement is achieved with active feedback control of the radiated divertor, an important result for long pulse operation in tokamaks. In conclusion, the improved physics understanding and validated modeling tools are used to design a 1GW steady-state scenario for CFETR.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Plasma confinement ; Plasma transport properties ; Tokamaks</subject><ispartof>Physics of plasmas, 2021-04, Vol.28 (4)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000239166230 ; 0000000219441733 ; 000000016892358X ; 0000000318234975 ; 0000000326839480 ; 0000000227549816 ; 0000000308001270 ; 0000000156947031 ; 0000000226466509 ; 0000000317819744 ; 0000000198761948 ; 0000000207999342 ; 0000000319372675 ; 0000000307030096 ; 0000000178809588 ; 0000000307924348 ; 0000000303042372 ; 0000000184958678 ; 0000000219300439 ; 0000000299341328 ; 0000000285775803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1783781$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, J. P.</creatorcontrib><creatorcontrib>Garofalo, A. M.</creatorcontrib><creatorcontrib>Gong, X. Z.</creatorcontrib><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Ding, S. Y.</creatorcontrib><creatorcontrib>Holcomb, C. T.</creatorcontrib><creatorcontrib>Hyatt, A.</creatorcontrib><creatorcontrib>Ferron, J.</creatorcontrib><creatorcontrib>McClenaghan, J.</creatorcontrib><creatorcontrib>McKee, G.</creatorcontrib><creatorcontrib>Kotschenreuther, M.</creatorcontrib><creatorcontrib>Wu, M. Q.</creatorcontrib><creatorcontrib>Shi, S. Y.</creatorcontrib><creatorcontrib>Li, M. H.</creatorcontrib><creatorcontrib>Zhu, X.</creatorcontrib><creatorcontrib>Sun, Y. W.</creatorcontrib><creatorcontrib>Xu, G. S.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Chen, J. L.</creatorcontrib><creatorcontrib>Zang, Q.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Liu, H. Q.</creatorcontrib><creatorcontrib>Lyu, B.</creatorcontrib><creatorcontrib>Guo, W. F.</creatorcontrib><creatorcontrib>Pan, C. K.</creatorcontrib><creatorcontrib>Ren, Q.</creatorcontrib><creatorcontrib>Li, G. Q.</creatorcontrib><creatorcontrib>Wang, H. Q.</creatorcontrib><creatorcontrib>Zhang, X. J.</creatorcontrib><creatorcontrib>Pinsker, R. I.</creatorcontrib><creatorcontrib>Staebler, G. M.</creatorcontrib><creatorcontrib>Lao, L. L.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><title>Advances in physics understanding of high poloidal beta regime toward steady-state operation of CFETR</title><title>Physics of plasmas</title><description>Experimental and modeling investigations of the high βp scenarios on the DIII-D and EAST tokamaks show advantages in high energy confinement, avoidance of n = 1 MHD, and core-edge integration with reduced heat flux, making this scenario an attractive option for CFETR steady-state operation. Experiments show that plasmas with high confinement and high density can be achieved with neutral beam injection on DIII-D (βp ~ 2.2, βN ~ 3.5, fBS ~ 50%, fGw ~ 1.0, H98y2 ~ 1.5) and pure RF power on EAST (βP ~ 2.0, βN ~ 1.6, fBS ~ 50%, fGw ~ 0.8, H98y2 > 1.3). By tailoring the current density profile, a q-profile with local (off-axis) negative shear is achieved that yields improved confinement and MHD stability. Transport analysis and simulation suggest that the combination of high density gradient and high Shafranov shift allows turbulence stabilization and higher confinement. Using on-axis ECH injection, tungsten accumulation is avoided on EAST, and this is reproduced in modeling. Reduced heat flux (by >40%) and maintenance of high core confinement is achieved with active feedback control of the radiated divertor, an important result for long pulse operation in tokamaks. In conclusion, the improved physics understanding and validated modeling tools are used to design a 1GW steady-state scenario for CFETR.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Plasma confinement</subject><subject>Plasma transport properties</subject><subject>Tokamaks</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNi8sKwjAQRYMo-PyHwX0hpbWpSxHFtbhwJzEZ25GalM6o-Pcq-AGuzuVwT0-NUl0uE1OYvP_dRidFkR-Hasx81VrnxaIcKVz5hw0OGShAW7-YHMM9eOxYbPAUKogXqKmqoY1NJG8bOKNY6LCiG4LEp-08sKD1r-TTCEJssbNCMXzT9XZz2E_V4GIbxtmPEzX_6PUuiSx0YkeCrnYxBHRySk2ZmTLN_jq9AUYWSCs</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Qian, J. P.</creator><creator>Garofalo, A. M.</creator><creator>Gong, X. Z.</creator><creator>Huang, J.</creator><creator>Ding, S. Y.</creator><creator>Holcomb, C. T.</creator><creator>Hyatt, A.</creator><creator>Ferron, J.</creator><creator>McClenaghan, J.</creator><creator>McKee, G.</creator><creator>Kotschenreuther, M.</creator><creator>Wu, M. Q.</creator><creator>Shi, S. Y.</creator><creator>Li, M. H.</creator><creator>Zhu, X.</creator><creator>Sun, Y. W.</creator><creator>Xu, G. S.</creator><creator>Wang, L.</creator><creator>Chen, J. L.</creator><creator>Zang, Q.</creator><creator>Zhang, B.</creator><creator>Zhang, L.</creator><creator>Liu, H. Q.</creator><creator>Lyu, B.</creator><creator>Guo, W. F.</creator><creator>Pan, C. K.</creator><creator>Ren, Q.</creator><creator>Li, G. Q.</creator><creator>Wang, H. Q.</creator><creator>Zhang, X. J.</creator><creator>Pinsker, R. I.</creator><creator>Staebler, G. M.</creator><creator>Lao, L. L.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000239166230</orcidid><orcidid>https://orcid.org/0000000219441733</orcidid><orcidid>https://orcid.org/000000016892358X</orcidid><orcidid>https://orcid.org/0000000318234975</orcidid><orcidid>https://orcid.org/0000000326839480</orcidid><orcidid>https://orcid.org/0000000227549816</orcidid><orcidid>https://orcid.org/0000000308001270</orcidid><orcidid>https://orcid.org/0000000156947031</orcidid><orcidid>https://orcid.org/0000000226466509</orcidid><orcidid>https://orcid.org/0000000317819744</orcidid><orcidid>https://orcid.org/0000000198761948</orcidid><orcidid>https://orcid.org/0000000207999342</orcidid><orcidid>https://orcid.org/0000000319372675</orcidid><orcidid>https://orcid.org/0000000307030096</orcidid><orcidid>https://orcid.org/0000000178809588</orcidid><orcidid>https://orcid.org/0000000307924348</orcidid><orcidid>https://orcid.org/0000000303042372</orcidid><orcidid>https://orcid.org/0000000184958678</orcidid><orcidid>https://orcid.org/0000000219300439</orcidid><orcidid>https://orcid.org/0000000299341328</orcidid><orcidid>https://orcid.org/0000000285775803</orcidid></search><sort><creationdate>20210415</creationdate><title>Advances in physics understanding of high poloidal beta regime toward steady-state operation of CFETR</title><author>Qian, J. P. ; Garofalo, A. M. ; Gong, X. Z. ; Huang, J. ; Ding, S. Y. ; Holcomb, C. T. ; Hyatt, A. ; Ferron, J. ; McClenaghan, J. ; McKee, G. ; Kotschenreuther, M. ; Wu, M. Q. ; Shi, S. Y. ; Li, M. H. ; Zhu, X. ; Sun, Y. W. ; Xu, G. S. ; Wang, L. ; Chen, J. L. ; Zang, Q. ; Zhang, B. ; Zhang, L. ; Liu, H. Q. ; Lyu, B. ; Guo, W. F. ; Pan, C. K. ; Ren, Q. ; Li, G. Q. ; Wang, H. Q. ; Zhang, X. J. ; Pinsker, R. I. ; Staebler, G. M. ; Lao, L. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17837813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Plasma confinement</topic><topic>Plasma transport properties</topic><topic>Tokamaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, J. P.</creatorcontrib><creatorcontrib>Garofalo, A. M.</creatorcontrib><creatorcontrib>Gong, X. Z.</creatorcontrib><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Ding, S. Y.</creatorcontrib><creatorcontrib>Holcomb, C. T.</creatorcontrib><creatorcontrib>Hyatt, A.</creatorcontrib><creatorcontrib>Ferron, J.</creatorcontrib><creatorcontrib>McClenaghan, J.</creatorcontrib><creatorcontrib>McKee, G.</creatorcontrib><creatorcontrib>Kotschenreuther, M.</creatorcontrib><creatorcontrib>Wu, M. Q.</creatorcontrib><creatorcontrib>Shi, S. Y.</creatorcontrib><creatorcontrib>Li, M. H.</creatorcontrib><creatorcontrib>Zhu, X.</creatorcontrib><creatorcontrib>Sun, Y. W.</creatorcontrib><creatorcontrib>Xu, G. S.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Chen, J. L.</creatorcontrib><creatorcontrib>Zang, Q.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Liu, H. Q.</creatorcontrib><creatorcontrib>Lyu, B.</creatorcontrib><creatorcontrib>Guo, W. F.</creatorcontrib><creatorcontrib>Pan, C. K.</creatorcontrib><creatorcontrib>Ren, Q.</creatorcontrib><creatorcontrib>Li, G. Q.</creatorcontrib><creatorcontrib>Wang, H. Q.</creatorcontrib><creatorcontrib>Zhang, X. J.</creatorcontrib><creatorcontrib>Pinsker, R. I.</creatorcontrib><creatorcontrib>Staebler, G. M.</creatorcontrib><creatorcontrib>Lao, L. L.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, J. P.</au><au>Garofalo, A. M.</au><au>Gong, X. Z.</au><au>Huang, J.</au><au>Ding, S. Y.</au><au>Holcomb, C. T.</au><au>Hyatt, A.</au><au>Ferron, J.</au><au>McClenaghan, J.</au><au>McKee, G.</au><au>Kotschenreuther, M.</au><au>Wu, M. Q.</au><au>Shi, S. Y.</au><au>Li, M. H.</au><au>Zhu, X.</au><au>Sun, Y. W.</au><au>Xu, G. S.</au><au>Wang, L.</au><au>Chen, J. L.</au><au>Zang, Q.</au><au>Zhang, B.</au><au>Zhang, L.</au><au>Liu, H. Q.</au><au>Lyu, B.</au><au>Guo, W. F.</au><au>Pan, C. K.</au><au>Ren, Q.</au><au>Li, G. Q.</au><au>Wang, H. Q.</au><au>Zhang, X. J.</au><au>Pinsker, R. I.</au><au>Staebler, G. M.</au><au>Lao, L. L.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>General Atomics, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in physics understanding of high poloidal beta regime toward steady-state operation of CFETR</atitle><jtitle>Physics of plasmas</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>28</volume><issue>4</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>Experimental and modeling investigations of the high βp scenarios on the DIII-D and EAST tokamaks show advantages in high energy confinement, avoidance of n = 1 MHD, and core-edge integration with reduced heat flux, making this scenario an attractive option for CFETR steady-state operation. Experiments show that plasmas with high confinement and high density can be achieved with neutral beam injection on DIII-D (βp ~ 2.2, βN ~ 3.5, fBS ~ 50%, fGw ~ 1.0, H98y2 ~ 1.5) and pure RF power on EAST (βP ~ 2.0, βN ~ 1.6, fBS ~ 50%, fGw ~ 0.8, H98y2 > 1.3). By tailoring the current density profile, a q-profile with local (off-axis) negative shear is achieved that yields improved confinement and MHD stability. Transport analysis and simulation suggest that the combination of high density gradient and high Shafranov shift allows turbulence stabilization and higher confinement. Using on-axis ECH injection, tungsten accumulation is avoided on EAST, and this is reproduced in modeling. Reduced heat flux (by >40%) and maintenance of high core confinement is achieved with active feedback control of the radiated divertor, an important result for long pulse operation in tokamaks. In conclusion, the improved physics understanding and validated modeling tools are used to design a 1GW steady-state scenario for CFETR.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000239166230</orcidid><orcidid>https://orcid.org/0000000219441733</orcidid><orcidid>https://orcid.org/000000016892358X</orcidid><orcidid>https://orcid.org/0000000318234975</orcidid><orcidid>https://orcid.org/0000000326839480</orcidid><orcidid>https://orcid.org/0000000227549816</orcidid><orcidid>https://orcid.org/0000000308001270</orcidid><orcidid>https://orcid.org/0000000156947031</orcidid><orcidid>https://orcid.org/0000000226466509</orcidid><orcidid>https://orcid.org/0000000317819744</orcidid><orcidid>https://orcid.org/0000000198761948</orcidid><orcidid>https://orcid.org/0000000207999342</orcidid><orcidid>https://orcid.org/0000000319372675</orcidid><orcidid>https://orcid.org/0000000307030096</orcidid><orcidid>https://orcid.org/0000000178809588</orcidid><orcidid>https://orcid.org/0000000307924348</orcidid><orcidid>https://orcid.org/0000000303042372</orcidid><orcidid>https://orcid.org/0000000184958678</orcidid><orcidid>https://orcid.org/0000000219300439</orcidid><orcidid>https://orcid.org/0000000299341328</orcidid><orcidid>https://orcid.org/0000000285775803</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2021-04, Vol.28 (4) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1783781 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Plasma confinement Plasma transport properties Tokamaks |
title | Advances in physics understanding of high poloidal beta regime toward steady-state operation of CFETR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20physics%20understanding%20of%20high%20poloidal%20beta%20regime%20toward%20steady-state%20operation%20of%20CFETR&rft.jtitle=Physics%20of%20plasmas&rft.au=Qian,%20J.%20P.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-04-15&rft.volume=28&rft.issue=4&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/&rft_dat=%3Costi%3E1783781%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_17837813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |