Loading…

Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities

The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismogr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Solid earth 2016-03, Vol.121 (3), p.1758-1775
Main Authors: Heeszel, David S., Wiens, Douglas A., Anandakrishnan, Sridhar, Aster, Richard C., Dalziel, Ian W. D., Huerta, Audrey D., Nyblade, Andrew A., Wilson, Terry J., Winberry, J. Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4285-632dd403eee200d245e25bbe2cb730f3ae02545aa3b251262a71d0380713489d3
cites cdi_FETCH-LOGICAL-a4285-632dd403eee200d245e25bbe2cb730f3ae02545aa3b251262a71d0380713489d3
container_end_page 1775
container_issue 3
container_start_page 1758
container_title Journal of geophysical research. Solid earth
container_volume 121
creator Heeszel, David S.
Wiens, Douglas A.
Anandakrishnan, Sridhar
Aster, Richard C.
Dalziel, Ian W. D.
Huerta, Audrey D.
Nyblade, Andrew A.
Wilson, Terry J.
Winberry, J. Paul
description The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismograph deployments to image the upper mantle structure of central and West Antarctica. Phase velocity maps are determined using a two–plane wave tomography method and are inverted for shear velocity using a Monte Carlo approach to estimate three‐dimensional velocity structure. Results illuminate the structural dichotomy between the East Antarctic Craton and West Antarctica, with West Antarctica showing thinner crust and slower upper mantle velocity. West Antarctica is characterized by a 70–100 km thick lithosphere, underlain by a low‐velocity zone to depths of at least 200 km. The slowest anomalies are beneath Ross Island and the Marie Byrd Land dome and are interpreted as upper mantle thermal anomalies possibly due to mantle plumes. The central Transantarctic Mountains are marked by an uppermost mantle slow‐velocity anomaly, suggesting that the topography is thermally supported. The presence of thin, higher‐velocity lithosphere to depths of about 70 km beneath the West Antarctic Rift System limits estimates of the regionally averaged heat flow to less than 90 mW/m2. The Ellsworth‐Whitmore block is underlain by mantle with velocities that are intermediate between those of the West Antarctic Rift System and the East Antarctic Craton. We interpret this province as Precambrian continental lithosphere that has been altered by Phanerozoic tectonic and magmatic activity. Key Points Slow mantle velocities delineate a thermal anomaly beneath Marie Byrd Land, possibly representing a mantle plume Seventy kilometer thick high‐velocity lithosphere beneath the West Antarctic Rift System limits average heat flow to less than 90 mW/m2 Ellsworth‐Whitmore mantle lithosphere has intermediate velocity suggesting a Precambrian block with tectonic alteration
doi_str_mv 10.1002/2015JB012616
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1785806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4027772791</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4285-632dd403eee200d245e25bbe2cb730f3ae02545aa3b251262a71d0380713489d3</originalsourceid><addsrcrecordid>eNp9kcFu2zAMho2hBVakufUBhPWyQ9NSkmU7xzTYuhUFBhQtehQYmV7UKpYnyS389lOQYRh6GC8kyI8kfrIozjhccgBxJYCr22vgouLVh-JE8Gq5WEpVHf2NufxYzGN8hmxNTvHypHh5HAYKbId9csRiCqNJYyDmO2aoTwEdw75lTxQTW_UJg0nWIOuC3zEMAadcRjdFG_ct9zg5sj-37A1fiQ1bjMReyXljk6V4Whx36CLN__hZ8fj1y8P62-Lux8339epugaVo1KKSom1LkEQkAFpRKhJqsyFhNrWETiKBUKVClBuhslyBNW9BNlBzWTbLVs6KT4e5PiarY15OZmt835NJmteNaqDK0OcDNAT_a8zy9M5GQ85hT36MmjfQwFLlDRk9f4c--zFk2XE_TUCZL1tn6uJAmeBjDNTpIdgdhklz0PsP6X8_lHF5wN-so-m_rL69ub9WvKyV_A24m5AR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1782043137</pqid></control><display><type>article</type><title>Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>Heeszel, David S. ; Wiens, Douglas A. ; Anandakrishnan, Sridhar ; Aster, Richard C. ; Dalziel, Ian W. D. ; Huerta, Audrey D. ; Nyblade, Andrew A. ; Wilson, Terry J. ; Winberry, J. Paul</creator><creatorcontrib>Heeszel, David S. ; Wiens, Douglas A. ; Anandakrishnan, Sridhar ; Aster, Richard C. ; Dalziel, Ian W. D. ; Huerta, Audrey D. ; Nyblade, Andrew A. ; Wilson, Terry J. ; Winberry, J. Paul</creatorcontrib><description>The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismograph deployments to image the upper mantle structure of central and West Antarctica. Phase velocity maps are determined using a two–plane wave tomography method and are inverted for shear velocity using a Monte Carlo approach to estimate three‐dimensional velocity structure. Results illuminate the structural dichotomy between the East Antarctic Craton and West Antarctica, with West Antarctica showing thinner crust and slower upper mantle velocity. West Antarctica is characterized by a 70–100 km thick lithosphere, underlain by a low‐velocity zone to depths of at least 200 km. The slowest anomalies are beneath Ross Island and the Marie Byrd Land dome and are interpreted as upper mantle thermal anomalies possibly due to mantle plumes. The central Transantarctic Mountains are marked by an uppermost mantle slow‐velocity anomaly, suggesting that the topography is thermally supported. The presence of thin, higher‐velocity lithosphere to depths of about 70 km beneath the West Antarctic Rift System limits estimates of the regionally averaged heat flow to less than 90 mW/m2. The Ellsworth‐Whitmore block is underlain by mantle with velocities that are intermediate between those of the West Antarctic Rift System and the East Antarctic Craton. We interpret this province as Precambrian continental lithosphere that has been altered by Phanerozoic tectonic and magmatic activity. Key Points Slow mantle velocities delineate a thermal anomaly beneath Marie Byrd Land, possibly representing a mantle plume Seventy kilometer thick high‐velocity lithosphere beneath the West Antarctic Rift System limits average heat flow to less than 90 mW/m2 Ellsworth‐Whitmore mantle lithosphere has intermediate velocity suggesting a Precambrian block with tectonic alteration</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2015JB012616</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anomalies ; Antarctica ; Arrays ; Cratons ; Geophysics ; Heat flow ; Land ; Lithosphere ; Magma ; Mantle ; mantle plume ; Marie Byrd Land ; Mountains ; Precambrian ; rift zone ; Ross Sea ; Sea level ; Tectonics ; Upper mantle ; Wave velocity</subject><ispartof>Journal of geophysical research. Solid earth, 2016-03, Vol.121 (3), p.1758-1775</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4285-632dd403eee200d245e25bbe2cb730f3ae02545aa3b251262a71d0380713489d3</citedby><cites>FETCH-LOGICAL-a4285-632dd403eee200d245e25bbe2cb730f3ae02545aa3b251262a71d0380713489d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1785806$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Heeszel, David S.</creatorcontrib><creatorcontrib>Wiens, Douglas A.</creatorcontrib><creatorcontrib>Anandakrishnan, Sridhar</creatorcontrib><creatorcontrib>Aster, Richard C.</creatorcontrib><creatorcontrib>Dalziel, Ian W. D.</creatorcontrib><creatorcontrib>Huerta, Audrey D.</creatorcontrib><creatorcontrib>Nyblade, Andrew A.</creatorcontrib><creatorcontrib>Wilson, Terry J.</creatorcontrib><creatorcontrib>Winberry, J. Paul</creatorcontrib><title>Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities</title><title>Journal of geophysical research. Solid earth</title><description>The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismograph deployments to image the upper mantle structure of central and West Antarctica. Phase velocity maps are determined using a two–plane wave tomography method and are inverted for shear velocity using a Monte Carlo approach to estimate three‐dimensional velocity structure. Results illuminate the structural dichotomy between the East Antarctic Craton and West Antarctica, with West Antarctica showing thinner crust and slower upper mantle velocity. West Antarctica is characterized by a 70–100 km thick lithosphere, underlain by a low‐velocity zone to depths of at least 200 km. The slowest anomalies are beneath Ross Island and the Marie Byrd Land dome and are interpreted as upper mantle thermal anomalies possibly due to mantle plumes. The central Transantarctic Mountains are marked by an uppermost mantle slow‐velocity anomaly, suggesting that the topography is thermally supported. The presence of thin, higher‐velocity lithosphere to depths of about 70 km beneath the West Antarctic Rift System limits estimates of the regionally averaged heat flow to less than 90 mW/m2. The Ellsworth‐Whitmore block is underlain by mantle with velocities that are intermediate between those of the West Antarctic Rift System and the East Antarctic Craton. We interpret this province as Precambrian continental lithosphere that has been altered by Phanerozoic tectonic and magmatic activity. Key Points Slow mantle velocities delineate a thermal anomaly beneath Marie Byrd Land, possibly representing a mantle plume Seventy kilometer thick high‐velocity lithosphere beneath the West Antarctic Rift System limits average heat flow to less than 90 mW/m2 Ellsworth‐Whitmore mantle lithosphere has intermediate velocity suggesting a Precambrian block with tectonic alteration</description><subject>Anomalies</subject><subject>Antarctica</subject><subject>Arrays</subject><subject>Cratons</subject><subject>Geophysics</subject><subject>Heat flow</subject><subject>Land</subject><subject>Lithosphere</subject><subject>Magma</subject><subject>Mantle</subject><subject>mantle plume</subject><subject>Marie Byrd Land</subject><subject>Mountains</subject><subject>Precambrian</subject><subject>rift zone</subject><subject>Ross Sea</subject><subject>Sea level</subject><subject>Tectonics</subject><subject>Upper mantle</subject><subject>Wave velocity</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu2zAMho2hBVakufUBhPWyQ9NSkmU7xzTYuhUFBhQtehQYmV7UKpYnyS389lOQYRh6GC8kyI8kfrIozjhccgBxJYCr22vgouLVh-JE8Gq5WEpVHf2NufxYzGN8hmxNTvHypHh5HAYKbId9csRiCqNJYyDmO2aoTwEdw75lTxQTW_UJg0nWIOuC3zEMAadcRjdFG_ct9zg5sj-37A1fiQ1bjMReyXljk6V4Whx36CLN__hZ8fj1y8P62-Lux8339epugaVo1KKSom1LkEQkAFpRKhJqsyFhNrWETiKBUKVClBuhslyBNW9BNlBzWTbLVs6KT4e5PiarY15OZmt835NJmteNaqDK0OcDNAT_a8zy9M5GQ85hT36MmjfQwFLlDRk9f4c--zFk2XE_TUCZL1tn6uJAmeBjDNTpIdgdhklz0PsP6X8_lHF5wN-so-m_rL69ub9WvKyV_A24m5AR</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Heeszel, David S.</creator><creator>Wiens, Douglas A.</creator><creator>Anandakrishnan, Sridhar</creator><creator>Aster, Richard C.</creator><creator>Dalziel, Ian W. D.</creator><creator>Huerta, Audrey D.</creator><creator>Nyblade, Andrew A.</creator><creator>Wilson, Terry J.</creator><creator>Winberry, J. Paul</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union (AGU)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>201603</creationdate><title>Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities</title><author>Heeszel, David S. ; Wiens, Douglas A. ; Anandakrishnan, Sridhar ; Aster, Richard C. ; Dalziel, Ian W. D. ; Huerta, Audrey D. ; Nyblade, Andrew A. ; Wilson, Terry J. ; Winberry, J. Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4285-632dd403eee200d245e25bbe2cb730f3ae02545aa3b251262a71d0380713489d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anomalies</topic><topic>Antarctica</topic><topic>Arrays</topic><topic>Cratons</topic><topic>Geophysics</topic><topic>Heat flow</topic><topic>Land</topic><topic>Lithosphere</topic><topic>Magma</topic><topic>Mantle</topic><topic>mantle plume</topic><topic>Marie Byrd Land</topic><topic>Mountains</topic><topic>Precambrian</topic><topic>rift zone</topic><topic>Ross Sea</topic><topic>Sea level</topic><topic>Tectonics</topic><topic>Upper mantle</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heeszel, David S.</creatorcontrib><creatorcontrib>Wiens, Douglas A.</creatorcontrib><creatorcontrib>Anandakrishnan, Sridhar</creatorcontrib><creatorcontrib>Aster, Richard C.</creatorcontrib><creatorcontrib>Dalziel, Ian W. D.</creatorcontrib><creatorcontrib>Huerta, Audrey D.</creatorcontrib><creatorcontrib>Nyblade, Andrew A.</creatorcontrib><creatorcontrib>Wilson, Terry J.</creatorcontrib><creatorcontrib>Winberry, J. Paul</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heeszel, David S.</au><au>Wiens, Douglas A.</au><au>Anandakrishnan, Sridhar</au><au>Aster, Richard C.</au><au>Dalziel, Ian W. D.</au><au>Huerta, Audrey D.</au><au>Nyblade, Andrew A.</au><au>Wilson, Terry J.</au><au>Winberry, J. Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2016-03</date><risdate>2016</risdate><volume>121</volume><issue>3</issue><spage>1758</spage><epage>1775</epage><pages>1758-1775</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismograph deployments to image the upper mantle structure of central and West Antarctica. Phase velocity maps are determined using a two–plane wave tomography method and are inverted for shear velocity using a Monte Carlo approach to estimate three‐dimensional velocity structure. Results illuminate the structural dichotomy between the East Antarctic Craton and West Antarctica, with West Antarctica showing thinner crust and slower upper mantle velocity. West Antarctica is characterized by a 70–100 km thick lithosphere, underlain by a low‐velocity zone to depths of at least 200 km. The slowest anomalies are beneath Ross Island and the Marie Byrd Land dome and are interpreted as upper mantle thermal anomalies possibly due to mantle plumes. The central Transantarctic Mountains are marked by an uppermost mantle slow‐velocity anomaly, suggesting that the topography is thermally supported. The presence of thin, higher‐velocity lithosphere to depths of about 70 km beneath the West Antarctic Rift System limits estimates of the regionally averaged heat flow to less than 90 mW/m2. The Ellsworth‐Whitmore block is underlain by mantle with velocities that are intermediate between those of the West Antarctic Rift System and the East Antarctic Craton. We interpret this province as Precambrian continental lithosphere that has been altered by Phanerozoic tectonic and magmatic activity. Key Points Slow mantle velocities delineate a thermal anomaly beneath Marie Byrd Land, possibly representing a mantle plume Seventy kilometer thick high‐velocity lithosphere beneath the West Antarctic Rift System limits average heat flow to less than 90 mW/m2 Ellsworth‐Whitmore mantle lithosphere has intermediate velocity suggesting a Precambrian block with tectonic alteration</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JB012616</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2016-03, Vol.121 (3), p.1758-1775
issn 2169-9313
2169-9356
language eng
recordid cdi_osti_scitechconnect_1785806
source Wiley; Alma/SFX Local Collection
subjects Anomalies
Antarctica
Arrays
Cratons
Geophysics
Heat flow
Land
Lithosphere
Magma
Mantle
mantle plume
Marie Byrd Land
Mountains
Precambrian
rift zone
Ross Sea
Sea level
Tectonics
Upper mantle
Wave velocity
title Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20mantle%20structure%20of%20central%20and%20West%20Antarctica%20from%20array%20analysis%20of%20Rayleigh%20wave%20phase%20velocities&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Heeszel,%20David%20S.&rft.date=2016-03&rft.volume=121&rft.issue=3&rft.spage=1758&rft.epage=1775&rft.pages=1758-1775&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2015JB012616&rft_dat=%3Cproquest_osti_%3E4027772791%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4285-632dd403eee200d245e25bbe2cb730f3ae02545aa3b251262a71d0380713489d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1782043137&rft_id=info:pmid/&rfr_iscdi=true