Loading…

Human influence on joint changes in temperature, rainfall and continental aridity

Despite the pervasive impact of drought on human and natural systems, the large-scale mechanisms conducive to regional drying remain poorly understood. Here we use a multivariate approach to identify two distinct externally forced fingerprints from multiple ensembles of Earth system model simulation...

Full description

Saved in:
Bibliographic Details
Published in:Nature climate change 2020-08, Vol.10 (12), p.726-731
Main Authors: Bonfils, Céline J. W., Santer, Benjamin D., Fyfe, John C., Marvel, Kate, Phillips, Thomas J., Zimmerman, Susan R. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the pervasive impact of drought on human and natural systems, the large-scale mechanisms conducive to regional drying remain poorly understood. Here we use a multivariate approach to identify two distinct externally forced fingerprints from multiple ensembles of Earth system model simulations. The leading fingerprint, F(M1)(x), is characterized by global warming, intensified wet–dry patterns and progressive large-scale continental aridification, largely driven by multidecadal increases in greenhouse gas (GHG) emissions. The second fingerprint, F(M2)(x), captures a pronounced interhemispheric temperature contrast, associated meridional shifts in the intertropical convergence zone and correlated anomalies in precipitation and aridity over California, the Sahel and India. F(M2)(x) exhibits nonlinear temporal behaviour: the intertropical convergence zone moves southwards before 1975 in response to increases in hemispherically asymmetric sulfate aerosol emissions, and it shifts northwards after 1975 due to reduced sulfur dioxide emissions and the GHG-induced warming of Northern Hemisphere landmasses. Both fingerprints are statistically identifiable in observations of joint changes in temperature, rainfall and aridity during 1950–2014. We show that the reliable simulation of these changes requires combined forcing by GHGs, direct and indirect effects of aerosols, and large volcanic eruptions. Our results suggest that GHG-induced aridification may be modulated regionally by future reductions in sulfate aerosol emissions.
ISSN:1758-678X
1758-6798
DOI:10.1038/s41558-020-0821-1