Loading…

Atomic Structure of Surface-Densified Phases in Ni-Rich Layered Compounds

In this work, we report the presence of surface-densified phases (β-Ni5O8, γ-Ni3O4, and δ-Ni7O8) in LiNiO2 (LNO)- and LiNi0.8Al0.2O2 (LNA)-layered compounds by combined atomic level scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). These surface phases fo...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-04, Vol.13 (15), p.17478-17486
Main Authors: Mukherjee, Pinaki, Lu, Ping, Faenza, Nicholas, Pereira, Nathalie, Amatucci, Glenn, Ceder, Gerbrand, Cosandey, Frederic
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we report the presence of surface-densified phases (β-Ni5O8, γ-Ni3O4, and δ-Ni7O8) in LiNiO2 (LNO)- and LiNi0.8Al0.2O2 (LNA)-layered compounds by combined atomic level scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). These surface phases form upon electrochemical aging at high state of charge corresponding to a fully delithiated state. A unique feature of these phases is the periodic occupancy by Ni2+ in the Li layer. This periodic Ni occupancy gives rise to extra diffraction reflections, which are qualitatively similar to those of the LiNi2O4 spinel structure, but these surface phases have a lower Ni valence state and cation content than spinel. These experimental results confirm the presence of thermodynamically stable surface phases and provide new insights into the phenomena of surface phase formation in Ni-rich layered structures.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c00143