Loading…

Fuel-cladding chemical interaction of a prototype annular U-10Zr fuel with Fe-12Cr ferritic/martensitic HT-9 cladding

As an alternative fuel form, the annular metallic fuel design eliminates the liquid sodium bond between the fuel and the cladding, providing back-end fuel cycle and other benefits. The fuel-cladding chemical interaction (FCCI) of annular fuel also presents new features. Here, state-of-the-art electr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2021-02, Vol.544, p.152588, Article 152588
Main Authors: Liu, Xiang, Capriotti, Luca, Yao, Tiankai, Harp, Jason M., Benson, Michael T., Wang, Yachun, Teng, Fei, He, Lingfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As an alternative fuel form, the annular metallic fuel design eliminates the liquid sodium bond between the fuel and the cladding, providing back-end fuel cycle and other benefits. The fuel-cladding chemical interaction (FCCI) of annular fuel also presents new features. Here, state-of-the-art electron microscopy and spectroscopy techniques were used to study the FCCI of a prototype annular U-10wt%Zr (U-10Zr) fuel with ferritic/martensitic HT-9 cladding irradiated to 3.3% fission per initial heavy atom. Compared with sodium-bonded solid fuels, negligible amounts of lanthanides were found in the FCCI layer in the investigated helium-bonded annular fuel. Instead, most lanthanides were retained in the newly formed UZr2 phase in the fuel center region. The interdiffusion of iron and uranium resulted in tetragonal (U,Zr)6Fe phase (space group I4/mcm) and cubic (U,Zr)(Fe,Cr)2 phase (space group Fd3¯m). The (U,Zr)(Fe,Cr)2phase contains a high density of voids and intergranular uranium monocarbides of NaCl-type crystal structure (space group Fm3¯m). At the interdiffusion zone and inner cladding interface, a porous lamellar structure composed of alternating Cr-rich layers and U-rich layers was observed. Next to the lamellar region, the unexpected phase transformation from body-centered cubic ferrite (α-Fe) to tetragonal binary Fe-Cr σ phase (space group P42/mnm) occurred, and tetragonal Fe-Cr-U-Si phase (space group I4/mmm) was identified. Due to the diffusion of carbon into the interdiffusion zone, carbon depletion inside the HT-9 led to the disappearance of the martensite lath structure, and intergranular U-rich carbides formed as a result of the diffusion of uranium into the cladding. These detailed new findings reveal the unique features of the FCCI behavior of annular U-Zr fuels, which could be a promising alternative fuel form for high burnup fast reactor applications.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2020.152588