Loading…
Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review
Deep neural networks (DNNs) are empirically derived systems that have transformed traditional research methods, and are driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are research fields where DNN r...
Saved in:
Published in: | Advanced functional materials 2021-08, Vol.31 (31), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243 |
---|---|
cites | cdi_FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243 |
container_end_page | n/a |
container_issue | 31 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Khatib, Omar Ren, Simiao Malof, Jordan Padilla, Willie J. |
description | Deep neural networks (DNNs) are empirically derived systems that have transformed traditional research methods, and are driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are research fields where DNN results valorize the data driven approach; especially in cases where conventional methods have failed. In view of the great potential of deep learning for the future of artificial electromagnetic materials research, the status of the field with a focus on recent advances, key limitations, and future directions is reviewed. Strategies, guidance, evaluation, and limits of using deep networks for both forward and inverse AEM problems are presented.
Deep learning is rapidly transforming traditional research methods and driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are fields where deep learning has tremendous potential. This comprehensive review article presents deep learning techniques for forward and inverse design of AEMs, with a focus on recent advances, key limitations, and future directions. |
doi_str_mv | 10.1002/adfm.202101748 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1788135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557886785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqVw5WzBucVOHCc9Vv0BpFYgBIib5Tjr1lUTB9u06o2H4Al5ElwFlSOnHWm_We1MFF0S3CcYxzeiVFU_xjHBJKP5UdQhjLBeguP8-KDJ22l05twKByZLaCd6HQM0aAbC1rpeIL8ENFmD9NZUYlGD1xI9WtOA9RocMgrNwYtKeLBarN3359cQjUzVWFhC7fQG0BNsNGzPoxMV9nDxO7vRy3TyPLrrzR5u70fDWU_SFOc9SQRQogYyLQtRMEixKKgCRZWgSRICDXDGmMREiqxUeSxlSSktCpYwhllMk2501d41zmvupPYgl9LUdYjASZbnJEkDdN1CjTXvH-A8X5kPW4e_eJymAWJZvqf6LSWtcc6C4o3VlbA7TjDfF8z3BfNDwcEwaA1bvYbdPzQfjqfzP-8PCYqBAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557886785</pqid></control><display><type>article</type><title>Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review</title><source>Wiley</source><creator>Khatib, Omar ; Ren, Simiao ; Malof, Jordan ; Padilla, Willie J.</creator><creatorcontrib>Khatib, Omar ; Ren, Simiao ; Malof, Jordan ; Padilla, Willie J.</creatorcontrib><description>Deep neural networks (DNNs) are empirically derived systems that have transformed traditional research methods, and are driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are research fields where DNN results valorize the data driven approach; especially in cases where conventional methods have failed. In view of the great potential of deep learning for the future of artificial electromagnetic materials research, the status of the field with a focus on recent advances, key limitations, and future directions is reviewed. Strategies, guidance, evaluation, and limits of using deep networks for both forward and inverse AEM problems are presented.
Deep learning is rapidly transforming traditional research methods and driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are fields where deep learning has tremendous potential. This comprehensive review article presents deep learning techniques for forward and inverse design of AEMs, with a focus on recent advances, key limitations, and future directions.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202101748</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Deep learning ; Electromagnetic properties ; Machine learning ; Materials science ; Metamaterials ; neural networks ; Photonic crystals</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (31), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243</citedby><cites>FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243</cites><orcidid>0000-0001-7734-8847 ; 0000000177348847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1788135$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khatib, Omar</creatorcontrib><creatorcontrib>Ren, Simiao</creatorcontrib><creatorcontrib>Malof, Jordan</creatorcontrib><creatorcontrib>Padilla, Willie J.</creatorcontrib><title>Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review</title><title>Advanced functional materials</title><description>Deep neural networks (DNNs) are empirically derived systems that have transformed traditional research methods, and are driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are research fields where DNN results valorize the data driven approach; especially in cases where conventional methods have failed. In view of the great potential of deep learning for the future of artificial electromagnetic materials research, the status of the field with a focus on recent advances, key limitations, and future directions is reviewed. Strategies, guidance, evaluation, and limits of using deep networks for both forward and inverse AEM problems are presented.
Deep learning is rapidly transforming traditional research methods and driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are fields where deep learning has tremendous potential. This comprehensive review article presents deep learning techniques for forward and inverse design of AEMs, with a focus on recent advances, key limitations, and future directions.</description><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Electromagnetic properties</subject><subject>Machine learning</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>neural networks</subject><subject>Photonic crystals</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqVw5WzBucVOHCc9Vv0BpFYgBIib5Tjr1lUTB9u06o2H4Al5ElwFlSOnHWm_We1MFF0S3CcYxzeiVFU_xjHBJKP5UdQhjLBeguP8-KDJ22l05twKByZLaCd6HQM0aAbC1rpeIL8ENFmD9NZUYlGD1xI9WtOA9RocMgrNwYtKeLBarN3359cQjUzVWFhC7fQG0BNsNGzPoxMV9nDxO7vRy3TyPLrrzR5u70fDWU_SFOc9SQRQogYyLQtRMEixKKgCRZWgSRICDXDGmMREiqxUeSxlSSktCpYwhllMk2501d41zmvupPYgl9LUdYjASZbnJEkDdN1CjTXvH-A8X5kPW4e_eJymAWJZvqf6LSWtcc6C4o3VlbA7TjDfF8z3BfNDwcEwaA1bvYbdPzQfjqfzP-8PCYqBAw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Khatib, Omar</creator><creator>Ren, Simiao</creator><creator>Malof, Jordan</creator><creator>Padilla, Willie J.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7734-8847</orcidid><orcidid>https://orcid.org/0000000177348847</orcidid></search><sort><creationdate>20210801</creationdate><title>Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review</title><author>Khatib, Omar ; Ren, Simiao ; Malof, Jordan ; Padilla, Willie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Electromagnetic properties</topic><topic>Machine learning</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>neural networks</topic><topic>Photonic crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatib, Omar</creatorcontrib><creatorcontrib>Ren, Simiao</creatorcontrib><creatorcontrib>Malof, Jordan</creatorcontrib><creatorcontrib>Padilla, Willie J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatib, Omar</au><au>Ren, Simiao</au><au>Malof, Jordan</au><au>Padilla, Willie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>31</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Deep neural networks (DNNs) are empirically derived systems that have transformed traditional research methods, and are driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are research fields where DNN results valorize the data driven approach; especially in cases where conventional methods have failed. In view of the great potential of deep learning for the future of artificial electromagnetic materials research, the status of the field with a focus on recent advances, key limitations, and future directions is reviewed. Strategies, guidance, evaluation, and limits of using deep networks for both forward and inverse AEM problems are presented.
Deep learning is rapidly transforming traditional research methods and driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are fields where deep learning has tremendous potential. This comprehensive review article presents deep learning techniques for forward and inverse design of AEMs, with a focus on recent advances, key limitations, and future directions.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202101748</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-7734-8847</orcidid><orcidid>https://orcid.org/0000000177348847</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-08, Vol.31 (31), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_osti_scitechconnect_1788135 |
source | Wiley |
subjects | Artificial neural networks Deep learning Electromagnetic properties Machine learning Materials science Metamaterials neural networks Photonic crystals |
title | Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20the%20Electromagnetic%20Properties%20of%20Metamaterials%E2%80%94A%20Comprehensive%20Review&rft.jtitle=Advanced%20functional%20materials&rft.au=Khatib,%20Omar&rft.date=2021-08-01&rft.volume=31&rft.issue=31&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202101748&rft_dat=%3Cproquest_osti_%3E2557886785%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557886785&rft_id=info:pmid/&rfr_iscdi=true |