Loading…

Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review

Deep neural networks (DNNs) are empirically derived systems that have transformed traditional research methods, and are driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are research fields where DNN r...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2021-08, Vol.31 (31), p.n/a
Main Authors: Khatib, Omar, Ren, Simiao, Malof, Jordan, Padilla, Willie J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243
cites cdi_FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243
container_end_page n/a
container_issue 31
container_start_page
container_title Advanced functional materials
container_volume 31
creator Khatib, Omar
Ren, Simiao
Malof, Jordan
Padilla, Willie J.
description Deep neural networks (DNNs) are empirically derived systems that have transformed traditional research methods, and are driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are research fields where DNN results valorize the data driven approach; especially in cases where conventional methods have failed. In view of the great potential of deep learning for the future of artificial electromagnetic materials research, the status of the field with a focus on recent advances, key limitations, and future directions is reviewed. Strategies, guidance, evaluation, and limits of using deep networks for both forward and inverse AEM problems are presented. Deep learning is rapidly transforming traditional research methods and driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are fields where deep learning has tremendous potential. This comprehensive review article presents deep learning techniques for forward and inverse design of AEMs, with a focus on recent advances, key limitations, and future directions.
doi_str_mv 10.1002/adfm.202101748
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1788135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557886785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqVw5WzBucVOHCc9Vv0BpFYgBIib5Tjr1lUTB9u06o2H4Al5ElwFlSOnHWm_We1MFF0S3CcYxzeiVFU_xjHBJKP5UdQhjLBeguP8-KDJ22l05twKByZLaCd6HQM0aAbC1rpeIL8ENFmD9NZUYlGD1xI9WtOA9RocMgrNwYtKeLBarN3359cQjUzVWFhC7fQG0BNsNGzPoxMV9nDxO7vRy3TyPLrrzR5u70fDWU_SFOc9SQRQogYyLQtRMEixKKgCRZWgSRICDXDGmMREiqxUeSxlSSktCpYwhllMk2501d41zmvupPYgl9LUdYjASZbnJEkDdN1CjTXvH-A8X5kPW4e_eJymAWJZvqf6LSWtcc6C4o3VlbA7TjDfF8z3BfNDwcEwaA1bvYbdPzQfjqfzP-8PCYqBAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557886785</pqid></control><display><type>article</type><title>Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review</title><source>Wiley</source><creator>Khatib, Omar ; Ren, Simiao ; Malof, Jordan ; Padilla, Willie J.</creator><creatorcontrib>Khatib, Omar ; Ren, Simiao ; Malof, Jordan ; Padilla, Willie J.</creatorcontrib><description>Deep neural networks (DNNs) are empirically derived systems that have transformed traditional research methods, and are driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are research fields where DNN results valorize the data driven approach; especially in cases where conventional methods have failed. In view of the great potential of deep learning for the future of artificial electromagnetic materials research, the status of the field with a focus on recent advances, key limitations, and future directions is reviewed. Strategies, guidance, evaluation, and limits of using deep networks for both forward and inverse AEM problems are presented. Deep learning is rapidly transforming traditional research methods and driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are fields where deep learning has tremendous potential. This comprehensive review article presents deep learning techniques for forward and inverse design of AEMs, with a focus on recent advances, key limitations, and future directions.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202101748</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Deep learning ; Electromagnetic properties ; Machine learning ; Materials science ; Metamaterials ; neural networks ; Photonic crystals</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (31), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243</citedby><cites>FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243</cites><orcidid>0000-0001-7734-8847 ; 0000000177348847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1788135$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khatib, Omar</creatorcontrib><creatorcontrib>Ren, Simiao</creatorcontrib><creatorcontrib>Malof, Jordan</creatorcontrib><creatorcontrib>Padilla, Willie J.</creatorcontrib><title>Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review</title><title>Advanced functional materials</title><description>Deep neural networks (DNNs) are empirically derived systems that have transformed traditional research methods, and are driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are research fields where DNN results valorize the data driven approach; especially in cases where conventional methods have failed. In view of the great potential of deep learning for the future of artificial electromagnetic materials research, the status of the field with a focus on recent advances, key limitations, and future directions is reviewed. Strategies, guidance, evaluation, and limits of using deep networks for both forward and inverse AEM problems are presented. Deep learning is rapidly transforming traditional research methods and driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are fields where deep learning has tremendous potential. This comprehensive review article presents deep learning techniques for forward and inverse design of AEMs, with a focus on recent advances, key limitations, and future directions.</description><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Electromagnetic properties</subject><subject>Machine learning</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>neural networks</subject><subject>Photonic crystals</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqVw5WzBucVOHCc9Vv0BpFYgBIib5Tjr1lUTB9u06o2H4Al5ElwFlSOnHWm_We1MFF0S3CcYxzeiVFU_xjHBJKP5UdQhjLBeguP8-KDJ22l05twKByZLaCd6HQM0aAbC1rpeIL8ENFmD9NZUYlGD1xI9WtOA9RocMgrNwYtKeLBarN3359cQjUzVWFhC7fQG0BNsNGzPoxMV9nDxO7vRy3TyPLrrzR5u70fDWU_SFOc9SQRQogYyLQtRMEixKKgCRZWgSRICDXDGmMREiqxUeSxlSSktCpYwhllMk2501d41zmvupPYgl9LUdYjASZbnJEkDdN1CjTXvH-A8X5kPW4e_eJymAWJZvqf6LSWtcc6C4o3VlbA7TjDfF8z3BfNDwcEwaA1bvYbdPzQfjqfzP-8PCYqBAw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Khatib, Omar</creator><creator>Ren, Simiao</creator><creator>Malof, Jordan</creator><creator>Padilla, Willie J.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7734-8847</orcidid><orcidid>https://orcid.org/0000000177348847</orcidid></search><sort><creationdate>20210801</creationdate><title>Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review</title><author>Khatib, Omar ; Ren, Simiao ; Malof, Jordan ; Padilla, Willie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Electromagnetic properties</topic><topic>Machine learning</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>neural networks</topic><topic>Photonic crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatib, Omar</creatorcontrib><creatorcontrib>Ren, Simiao</creatorcontrib><creatorcontrib>Malof, Jordan</creatorcontrib><creatorcontrib>Padilla, Willie J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatib, Omar</au><au>Ren, Simiao</au><au>Malof, Jordan</au><au>Padilla, Willie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>31</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Deep neural networks (DNNs) are empirically derived systems that have transformed traditional research methods, and are driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are research fields where DNN results valorize the data driven approach; especially in cases where conventional methods have failed. In view of the great potential of deep learning for the future of artificial electromagnetic materials research, the status of the field with a focus on recent advances, key limitations, and future directions is reviewed. Strategies, guidance, evaluation, and limits of using deep networks for both forward and inverse AEM problems are presented. Deep learning is rapidly transforming traditional research methods and driving scientific discovery. Artificial electromagnetic materials (AEMs)—including electromagnetic metamaterials, photonic crystals, and plasmonics—are fields where deep learning has tremendous potential. This comprehensive review article presents deep learning techniques for forward and inverse design of AEMs, with a focus on recent advances, key limitations, and future directions.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202101748</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-7734-8847</orcidid><orcidid>https://orcid.org/0000000177348847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-08, Vol.31 (31), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1788135
source Wiley
subjects Artificial neural networks
Deep learning
Electromagnetic properties
Machine learning
Materials science
Metamaterials
neural networks
Photonic crystals
title Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20the%20Electromagnetic%20Properties%20of%20Metamaterials%E2%80%94A%20Comprehensive%20Review&rft.jtitle=Advanced%20functional%20materials&rft.au=Khatib,%20Omar&rft.date=2021-08-01&rft.volume=31&rft.issue=31&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202101748&rft_dat=%3Cproquest_osti_%3E2557886785%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4508-c1ae41f9c5dbab6e50ab4fef4fa433adf90766c01ca7df82ccd444bb636606243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557886785&rft_id=info:pmid/&rfr_iscdi=true