Loading…

A Redox-Robust Ceramic Anode-Supported Low-Temperature Solid Oxide Fuel Cell

A critical factor hampering the deployment of fuel-flexible, low-temperature solid oxide fuel cells (LT-SOFCs) is the long-term stability of the electrode in different gas environments. Specifically, for state-of-the-art Ni-cermet anodes, reduction/oxidation (redox) cycles during fuel-rich and fuel-...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-04, Vol.12 (16), p.18526-18532
Main Authors: Hussain, A. Mohammed, Huang, Yi-Lin, Pan, Ke-Ji, Robinson, Ian A, Wang, Xizheng, Wachsman, Eric D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A critical factor hampering the deployment of fuel-flexible, low-temperature solid oxide fuel cells (LT-SOFCs) is the long-term stability of the electrode in different gas environments. Specifically, for state-of-the-art Ni-cermet anodes, reduction/oxidation (redox) cycles during fuel-rich and fuel-starved conditions cause a huge volume change, eventually leading to cell failure. Here, we report a robust redox-stable SrFe0.2Co0.4Mo0.4O3 (SFCM)/Ce0.9Gd0.1O2 ceramic anode-supported LT-SOFC with high performance and remarkable redox stability. The anode-supported configuration tackles the high ohmic loss associated with conventional ceramic anodes, achieving a high open circuit voltage of ∼0.9 V and a peak power density of 500 mW/cm2 at 600 °C in hydrogen. In addition, ceramic anode-supported SOFCs are stable over tens of redox cycles under harsh operating conditions. Our study reveals that oxygen nonstoichiometry of SFCM compensates for the dimensional changes that occur during redox cycles. Our results demonstrate the potential of all ceramic cells for the next generation of LT-SOFCs.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c01611