Loading…
Embedding via the Exact Factorization Approach
We present a quantum electronic embedding method derived from the exact factorization approach to calculate static properties of a many-electron system. The method is exact in principle but the practical power lies in utilizing input from a low-level calculation on the entire system in a high-level...
Saved in:
Published in: | Physical review letters 2020-05, Vol.124 (20), p.1-206401, Article 206401 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a quantum electronic embedding method derived from the exact factorization approach to calculate static properties of a many-electron system. The method is exact in principle but the practical power lies in utilizing input from a low-level calculation on the entire system in a high-level method computed on a small fragment, as in other embedding methods. Here, the exact factorization approach defines an embedding Hamiltonian on the fragment. Various Hubbard models demonstrate that remarkably accurate ground-state energies are obtained over the full range of weak to strongly correlated systems. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.124.206401 |