Loading…
Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves
The Farquhar‐von Caemmerer‐Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statist...
Saved in:
Published in: | Plant, cell and environment cell and environment, 2021-05, Vol.44 (5), p.1436-1450 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453 |
---|---|
cites | cdi_FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453 |
container_end_page | 1450 |
container_issue | 5 |
container_start_page | 1436 |
container_title | Plant, cell and environment |
container_volume | 44 |
creator | Xiao, Yi Sloan, Jen Hepworth, Chris Osborne, Colin P. Fleming, Andrew J. Chen, Xingyuan Zhu, Xin‐Guang |
description | The Farquhar‐von Caemmerer‐Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statistics to fit photosynthetic parameters using concurrent gas exchange and chlorophyll fluorescence measurements whilst evaluating the reliability of the parameter estimation. We have tested this tool on synthetic data and experimental data from rice leaves. Our results indicate that reliable parameter estimation can be achieved whilst only keeping one parameter, Km, that is, Michaelis constant for CO2 by Rubisco, prefixed. Additionally, we show that including detailed low CO2 measurements at low light levels increases reliability and suggests this as a new standard measurement protocol. By providing an estimated distribution of parameter values, the tool can be used to evaluate the quality of data from gas exchange and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting methods, the use of a Bayesian statistics‐based tool minimizes human interaction during fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, interactive Bayesian tool script is provided.
The uncertainties of estimating photosynthetic parameters in the Farquhar‐von Caemmerer‐Berry were systematically evaluated with a Bayesian approach using synthetic datasets. A more robust and reliable protocol of photosynthetic parameter estimation and corresponding data collection was developed and applied in rice leaves. |
doi_str_mv | 10.1111/pce.13995 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1804960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515889738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453</originalsourceid><addsrcrecordid>eNp10UFvFSEUBWBiNPa1uvAPGKIbXUzLHWAY3NWXpzZpUhd1TShz8U0zD8aB0cy_l3aqiyZlQ0K-nORwCHkD7BTKORsdngLXWj4jG-CNrDgT7DnZMBCsUkrDETlO6Zax8qD0S3LEuQAma7Uh17uU-4PNffhJ5-BwyrYPeflEz-lnu2DqbaB2HKdo3Z7mSA-xw2G40-M-5piWkPdFJdoHuuV0QPsb0yvywtsh4euH-4T8-LK73n6rLq--XmzPLysnQMpKMebhxqP2rBPWMwStUTvftJ6BajiA57LmtmNt3bjOMdXxBtoOay-8FJKfkHdrbiwlTHJ9Rrd3MQR02UDLhG5YQR9WVEr8mjFlc-iTKyVswDgnUwvVQN2Uvyn0_SN6G-cplAqmliDbViveFvVxVW6KKU3ozTiVL5wWA8zc7WHKHuZ-j2LfPiTONwfs_st_AxRwtoI__YDL00nm-3a3Rv4FqbWSrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515889738</pqid></control><display><type>article</type><title>Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Xiao, Yi ; Sloan, Jen ; Hepworth, Chris ; Osborne, Colin P. ; Fleming, Andrew J. ; Chen, Xingyuan ; Zhu, Xin‐Guang</creator><creatorcontrib>Xiao, Yi ; Sloan, Jen ; Hepworth, Chris ; Osborne, Colin P. ; Fleming, Andrew J. ; Chen, Xingyuan ; Zhu, Xin‐Guang</creatorcontrib><description>The Farquhar‐von Caemmerer‐Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statistics to fit photosynthetic parameters using concurrent gas exchange and chlorophyll fluorescence measurements whilst evaluating the reliability of the parameter estimation. We have tested this tool on synthetic data and experimental data from rice leaves. Our results indicate that reliable parameter estimation can be achieved whilst only keeping one parameter, Km, that is, Michaelis constant for CO2 by Rubisco, prefixed. Additionally, we show that including detailed low CO2 measurements at low light levels increases reliability and suggests this as a new standard measurement protocol. By providing an estimated distribution of parameter values, the tool can be used to evaluate the quality of data from gas exchange and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting methods, the use of a Bayesian statistics‐based tool minimizes human interaction during fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, interactive Bayesian tool script is provided.
The uncertainties of estimating photosynthetic parameters in the Farquhar‐von Caemmerer‐Berry were systematically evaluated with a Bayesian approach using synthetic datasets. A more robust and reliable protocol of photosynthetic parameter estimation and corresponding data collection was developed and applied in rice leaves.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.13995</identifier><identifier>PMID: 33410527</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Bayesian analysis ; Bayesian statistics ; Carbon dioxide ; Chlorophyll ; Evaluation ; Fluorescence ; Gas exchange ; leaf photosynthesis ; Leaves ; Light levels ; Mathematical models ; mesophyll conductance ; Parameter estimation ; Photosynthesis ; Reliability analysis ; Ribulose-bisphosphate carboxylase ; Statistics</subject><ispartof>Plant, cell and environment, 2021-05, Vol.44 (5), p.1436-1450</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453</citedby><cites>FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453</cites><orcidid>0000-0002-9556-8074 ; 0000000295568074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33410527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1804960$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Sloan, Jen</creatorcontrib><creatorcontrib>Hepworth, Chris</creatorcontrib><creatorcontrib>Osborne, Colin P.</creatorcontrib><creatorcontrib>Fleming, Andrew J.</creatorcontrib><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Zhu, Xin‐Guang</creatorcontrib><title>Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>The Farquhar‐von Caemmerer‐Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statistics to fit photosynthetic parameters using concurrent gas exchange and chlorophyll fluorescence measurements whilst evaluating the reliability of the parameter estimation. We have tested this tool on synthetic data and experimental data from rice leaves. Our results indicate that reliable parameter estimation can be achieved whilst only keeping one parameter, Km, that is, Michaelis constant for CO2 by Rubisco, prefixed. Additionally, we show that including detailed low CO2 measurements at low light levels increases reliability and suggests this as a new standard measurement protocol. By providing an estimated distribution of parameter values, the tool can be used to evaluate the quality of data from gas exchange and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting methods, the use of a Bayesian statistics‐based tool minimizes human interaction during fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, interactive Bayesian tool script is provided.
The uncertainties of estimating photosynthetic parameters in the Farquhar‐von Caemmerer‐Berry were systematically evaluated with a Bayesian approach using synthetic datasets. A more robust and reliable protocol of photosynthetic parameter estimation and corresponding data collection was developed and applied in rice leaves.</description><subject>Bayesian analysis</subject><subject>Bayesian statistics</subject><subject>Carbon dioxide</subject><subject>Chlorophyll</subject><subject>Evaluation</subject><subject>Fluorescence</subject><subject>Gas exchange</subject><subject>leaf photosynthesis</subject><subject>Leaves</subject><subject>Light levels</subject><subject>Mathematical models</subject><subject>mesophyll conductance</subject><subject>Parameter estimation</subject><subject>Photosynthesis</subject><subject>Reliability analysis</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>Statistics</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10UFvFSEUBWBiNPa1uvAPGKIbXUzLHWAY3NWXpzZpUhd1TShz8U0zD8aB0cy_l3aqiyZlQ0K-nORwCHkD7BTKORsdngLXWj4jG-CNrDgT7DnZMBCsUkrDETlO6Zax8qD0S3LEuQAma7Uh17uU-4PNffhJ5-BwyrYPeflEz-lnu2DqbaB2HKdo3Z7mSA-xw2G40-M-5piWkPdFJdoHuuV0QPsb0yvywtsh4euH-4T8-LK73n6rLq--XmzPLysnQMpKMebhxqP2rBPWMwStUTvftJ6BajiA57LmtmNt3bjOMdXxBtoOay-8FJKfkHdrbiwlTHJ9Rrd3MQR02UDLhG5YQR9WVEr8mjFlc-iTKyVswDgnUwvVQN2Uvyn0_SN6G-cplAqmliDbViveFvVxVW6KKU3ozTiVL5wWA8zc7WHKHuZ-j2LfPiTONwfs_st_AxRwtoI__YDL00nm-3a3Rv4FqbWSrw</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Xiao, Yi</creator><creator>Sloan, Jen</creator><creator>Hepworth, Chris</creator><creator>Osborne, Colin P.</creator><creator>Fleming, Andrew J.</creator><creator>Chen, Xingyuan</creator><creator>Zhu, Xin‐Guang</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9556-8074</orcidid><orcidid>https://orcid.org/0000000295568074</orcidid></search><sort><creationdate>202105</creationdate><title>Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves</title><author>Xiao, Yi ; Sloan, Jen ; Hepworth, Chris ; Osborne, Colin P. ; Fleming, Andrew J. ; Chen, Xingyuan ; Zhu, Xin‐Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Bayesian statistics</topic><topic>Carbon dioxide</topic><topic>Chlorophyll</topic><topic>Evaluation</topic><topic>Fluorescence</topic><topic>Gas exchange</topic><topic>leaf photosynthesis</topic><topic>Leaves</topic><topic>Light levels</topic><topic>Mathematical models</topic><topic>mesophyll conductance</topic><topic>Parameter estimation</topic><topic>Photosynthesis</topic><topic>Reliability analysis</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Sloan, Jen</creatorcontrib><creatorcontrib>Hepworth, Chris</creatorcontrib><creatorcontrib>Osborne, Colin P.</creatorcontrib><creatorcontrib>Fleming, Andrew J.</creatorcontrib><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Zhu, Xin‐Guang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yi</au><au>Sloan, Jen</au><au>Hepworth, Chris</au><au>Osborne, Colin P.</au><au>Fleming, Andrew J.</au><au>Chen, Xingyuan</au><au>Zhu, Xin‐Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2021-05</date><risdate>2021</risdate><volume>44</volume><issue>5</issue><spage>1436</spage><epage>1450</epage><pages>1436-1450</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><abstract>The Farquhar‐von Caemmerer‐Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statistics to fit photosynthetic parameters using concurrent gas exchange and chlorophyll fluorescence measurements whilst evaluating the reliability of the parameter estimation. We have tested this tool on synthetic data and experimental data from rice leaves. Our results indicate that reliable parameter estimation can be achieved whilst only keeping one parameter, Km, that is, Michaelis constant for CO2 by Rubisco, prefixed. Additionally, we show that including detailed low CO2 measurements at low light levels increases reliability and suggests this as a new standard measurement protocol. By providing an estimated distribution of parameter values, the tool can be used to evaluate the quality of data from gas exchange and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting methods, the use of a Bayesian statistics‐based tool minimizes human interaction during fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, interactive Bayesian tool script is provided.
The uncertainties of estimating photosynthetic parameters in the Farquhar‐von Caemmerer‐Berry were systematically evaluated with a Bayesian approach using synthetic datasets. A more robust and reliable protocol of photosynthetic parameter estimation and corresponding data collection was developed and applied in rice leaves.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>33410527</pmid><doi>10.1111/pce.13995</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9556-8074</orcidid><orcidid>https://orcid.org/0000000295568074</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7791 |
ispartof | Plant, cell and environment, 2021-05, Vol.44 (5), p.1436-1450 |
issn | 0140-7791 1365-3040 |
language | eng |
recordid | cdi_osti_scitechconnect_1804960 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bayesian analysis Bayesian statistics Carbon dioxide Chlorophyll Evaluation Fluorescence Gas exchange leaf photosynthesis Leaves Light levels Mathematical models mesophyll conductance Parameter estimation Photosynthesis Reliability analysis Ribulose-bisphosphate carboxylase Statistics |
title | Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20uncertainty:%20A%20Bayesian%20approach%20to%20modelling%20photosynthesis%20in%20C3%20leaves&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Xiao,%20Yi&rft.date=2021-05&rft.volume=44&rft.issue=5&rft.spage=1436&rft.epage=1450&rft.pages=1436-1450&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.13995&rft_dat=%3Cproquest_osti_%3E2515889738%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515889738&rft_id=info:pmid/33410527&rfr_iscdi=true |