Loading…

Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves

The Farquhar‐von Caemmerer‐Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statist...

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment cell and environment, 2021-05, Vol.44 (5), p.1436-1450
Main Authors: Xiao, Yi, Sloan, Jen, Hepworth, Chris, Osborne, Colin P., Fleming, Andrew J., Chen, Xingyuan, Zhu, Xin‐Guang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453
cites cdi_FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453
container_end_page 1450
container_issue 5
container_start_page 1436
container_title Plant, cell and environment
container_volume 44
creator Xiao, Yi
Sloan, Jen
Hepworth, Chris
Osborne, Colin P.
Fleming, Andrew J.
Chen, Xingyuan
Zhu, Xin‐Guang
description The Farquhar‐von Caemmerer‐Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statistics to fit photosynthetic parameters using concurrent gas exchange and chlorophyll fluorescence measurements whilst evaluating the reliability of the parameter estimation. We have tested this tool on synthetic data and experimental data from rice leaves. Our results indicate that reliable parameter estimation can be achieved whilst only keeping one parameter, Km, that is, Michaelis constant for CO2 by Rubisco, prefixed. Additionally, we show that including detailed low CO2 measurements at low light levels increases reliability and suggests this as a new standard measurement protocol. By providing an estimated distribution of parameter values, the tool can be used to evaluate the quality of data from gas exchange and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting methods, the use of a Bayesian statistics‐based tool minimizes human interaction during fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, interactive Bayesian tool script is provided. The uncertainties of estimating photosynthetic parameters in the Farquhar‐von Caemmerer‐Berry were systematically evaluated with a Bayesian approach using synthetic datasets. A more robust and reliable protocol of photosynthetic parameter estimation and corresponding data collection was developed and applied in rice leaves.
doi_str_mv 10.1111/pce.13995
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1804960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515889738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453</originalsourceid><addsrcrecordid>eNp10UFvFSEUBWBiNPa1uvAPGKIbXUzLHWAY3NWXpzZpUhd1TShz8U0zD8aB0cy_l3aqiyZlQ0K-nORwCHkD7BTKORsdngLXWj4jG-CNrDgT7DnZMBCsUkrDETlO6Zax8qD0S3LEuQAma7Uh17uU-4PNffhJ5-BwyrYPeflEz-lnu2DqbaB2HKdo3Z7mSA-xw2G40-M-5piWkPdFJdoHuuV0QPsb0yvywtsh4euH-4T8-LK73n6rLq--XmzPLysnQMpKMebhxqP2rBPWMwStUTvftJ6BajiA57LmtmNt3bjOMdXxBtoOay-8FJKfkHdrbiwlTHJ9Rrd3MQR02UDLhG5YQR9WVEr8mjFlc-iTKyVswDgnUwvVQN2Uvyn0_SN6G-cplAqmliDbViveFvVxVW6KKU3ozTiVL5wWA8zc7WHKHuZ-j2LfPiTONwfs_st_AxRwtoI__YDL00nm-3a3Rv4FqbWSrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515889738</pqid></control><display><type>article</type><title>Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Xiao, Yi ; Sloan, Jen ; Hepworth, Chris ; Osborne, Colin P. ; Fleming, Andrew J. ; Chen, Xingyuan ; Zhu, Xin‐Guang</creator><creatorcontrib>Xiao, Yi ; Sloan, Jen ; Hepworth, Chris ; Osborne, Colin P. ; Fleming, Andrew J. ; Chen, Xingyuan ; Zhu, Xin‐Guang</creatorcontrib><description>The Farquhar‐von Caemmerer‐Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statistics to fit photosynthetic parameters using concurrent gas exchange and chlorophyll fluorescence measurements whilst evaluating the reliability of the parameter estimation. We have tested this tool on synthetic data and experimental data from rice leaves. Our results indicate that reliable parameter estimation can be achieved whilst only keeping one parameter, Km, that is, Michaelis constant for CO2 by Rubisco, prefixed. Additionally, we show that including detailed low CO2 measurements at low light levels increases reliability and suggests this as a new standard measurement protocol. By providing an estimated distribution of parameter values, the tool can be used to evaluate the quality of data from gas exchange and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting methods, the use of a Bayesian statistics‐based tool minimizes human interaction during fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, interactive Bayesian tool script is provided. The uncertainties of estimating photosynthetic parameters in the Farquhar‐von Caemmerer‐Berry were systematically evaluated with a Bayesian approach using synthetic datasets. A more robust and reliable protocol of photosynthetic parameter estimation and corresponding data collection was developed and applied in rice leaves.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.13995</identifier><identifier>PMID: 33410527</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Bayesian analysis ; Bayesian statistics ; Carbon dioxide ; Chlorophyll ; Evaluation ; Fluorescence ; Gas exchange ; leaf photosynthesis ; Leaves ; Light levels ; Mathematical models ; mesophyll conductance ; Parameter estimation ; Photosynthesis ; Reliability analysis ; Ribulose-bisphosphate carboxylase ; Statistics</subject><ispartof>Plant, cell and environment, 2021-05, Vol.44 (5), p.1436-1450</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453</citedby><cites>FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453</cites><orcidid>0000-0002-9556-8074 ; 0000000295568074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33410527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1804960$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Sloan, Jen</creatorcontrib><creatorcontrib>Hepworth, Chris</creatorcontrib><creatorcontrib>Osborne, Colin P.</creatorcontrib><creatorcontrib>Fleming, Andrew J.</creatorcontrib><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Zhu, Xin‐Guang</creatorcontrib><title>Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>The Farquhar‐von Caemmerer‐Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statistics to fit photosynthetic parameters using concurrent gas exchange and chlorophyll fluorescence measurements whilst evaluating the reliability of the parameter estimation. We have tested this tool on synthetic data and experimental data from rice leaves. Our results indicate that reliable parameter estimation can be achieved whilst only keeping one parameter, Km, that is, Michaelis constant for CO2 by Rubisco, prefixed. Additionally, we show that including detailed low CO2 measurements at low light levels increases reliability and suggests this as a new standard measurement protocol. By providing an estimated distribution of parameter values, the tool can be used to evaluate the quality of data from gas exchange and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting methods, the use of a Bayesian statistics‐based tool minimizes human interaction during fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, interactive Bayesian tool script is provided. The uncertainties of estimating photosynthetic parameters in the Farquhar‐von Caemmerer‐Berry were systematically evaluated with a Bayesian approach using synthetic datasets. A more robust and reliable protocol of photosynthetic parameter estimation and corresponding data collection was developed and applied in rice leaves.</description><subject>Bayesian analysis</subject><subject>Bayesian statistics</subject><subject>Carbon dioxide</subject><subject>Chlorophyll</subject><subject>Evaluation</subject><subject>Fluorescence</subject><subject>Gas exchange</subject><subject>leaf photosynthesis</subject><subject>Leaves</subject><subject>Light levels</subject><subject>Mathematical models</subject><subject>mesophyll conductance</subject><subject>Parameter estimation</subject><subject>Photosynthesis</subject><subject>Reliability analysis</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>Statistics</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10UFvFSEUBWBiNPa1uvAPGKIbXUzLHWAY3NWXpzZpUhd1TShz8U0zD8aB0cy_l3aqiyZlQ0K-nORwCHkD7BTKORsdngLXWj4jG-CNrDgT7DnZMBCsUkrDETlO6Zax8qD0S3LEuQAma7Uh17uU-4PNffhJ5-BwyrYPeflEz-lnu2DqbaB2HKdo3Z7mSA-xw2G40-M-5piWkPdFJdoHuuV0QPsb0yvywtsh4euH-4T8-LK73n6rLq--XmzPLysnQMpKMebhxqP2rBPWMwStUTvftJ6BajiA57LmtmNt3bjOMdXxBtoOay-8FJKfkHdrbiwlTHJ9Rrd3MQR02UDLhG5YQR9WVEr8mjFlc-iTKyVswDgnUwvVQN2Uvyn0_SN6G-cplAqmliDbViveFvVxVW6KKU3ozTiVL5wWA8zc7WHKHuZ-j2LfPiTONwfs_st_AxRwtoI__YDL00nm-3a3Rv4FqbWSrw</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Xiao, Yi</creator><creator>Sloan, Jen</creator><creator>Hepworth, Chris</creator><creator>Osborne, Colin P.</creator><creator>Fleming, Andrew J.</creator><creator>Chen, Xingyuan</creator><creator>Zhu, Xin‐Guang</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9556-8074</orcidid><orcidid>https://orcid.org/0000000295568074</orcidid></search><sort><creationdate>202105</creationdate><title>Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves</title><author>Xiao, Yi ; Sloan, Jen ; Hepworth, Chris ; Osborne, Colin P. ; Fleming, Andrew J. ; Chen, Xingyuan ; Zhu, Xin‐Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Bayesian statistics</topic><topic>Carbon dioxide</topic><topic>Chlorophyll</topic><topic>Evaluation</topic><topic>Fluorescence</topic><topic>Gas exchange</topic><topic>leaf photosynthesis</topic><topic>Leaves</topic><topic>Light levels</topic><topic>Mathematical models</topic><topic>mesophyll conductance</topic><topic>Parameter estimation</topic><topic>Photosynthesis</topic><topic>Reliability analysis</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Sloan, Jen</creatorcontrib><creatorcontrib>Hepworth, Chris</creatorcontrib><creatorcontrib>Osborne, Colin P.</creatorcontrib><creatorcontrib>Fleming, Andrew J.</creatorcontrib><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Zhu, Xin‐Guang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yi</au><au>Sloan, Jen</au><au>Hepworth, Chris</au><au>Osborne, Colin P.</au><au>Fleming, Andrew J.</au><au>Chen, Xingyuan</au><au>Zhu, Xin‐Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2021-05</date><risdate>2021</risdate><volume>44</volume><issue>5</issue><spage>1436</spage><epage>1450</epage><pages>1436-1450</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><abstract>The Farquhar‐von Caemmerer‐Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statistics to fit photosynthetic parameters using concurrent gas exchange and chlorophyll fluorescence measurements whilst evaluating the reliability of the parameter estimation. We have tested this tool on synthetic data and experimental data from rice leaves. Our results indicate that reliable parameter estimation can be achieved whilst only keeping one parameter, Km, that is, Michaelis constant for CO2 by Rubisco, prefixed. Additionally, we show that including detailed low CO2 measurements at low light levels increases reliability and suggests this as a new standard measurement protocol. By providing an estimated distribution of parameter values, the tool can be used to evaluate the quality of data from gas exchange and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting methods, the use of a Bayesian statistics‐based tool minimizes human interaction during fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, interactive Bayesian tool script is provided. The uncertainties of estimating photosynthetic parameters in the Farquhar‐von Caemmerer‐Berry were systematically evaluated with a Bayesian approach using synthetic datasets. A more robust and reliable protocol of photosynthetic parameter estimation and corresponding data collection was developed and applied in rice leaves.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>33410527</pmid><doi>10.1111/pce.13995</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9556-8074</orcidid><orcidid>https://orcid.org/0000000295568074</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 2021-05, Vol.44 (5), p.1436-1450
issn 0140-7791
1365-3040
language eng
recordid cdi_osti_scitechconnect_1804960
source Wiley-Blackwell Read & Publish Collection
subjects Bayesian analysis
Bayesian statistics
Carbon dioxide
Chlorophyll
Evaluation
Fluorescence
Gas exchange
leaf photosynthesis
Leaves
Light levels
Mathematical models
mesophyll conductance
Parameter estimation
Photosynthesis
Reliability analysis
Ribulose-bisphosphate carboxylase
Statistics
title Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20uncertainty:%20A%20Bayesian%20approach%20to%20modelling%20photosynthesis%20in%20C3%20leaves&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Xiao,%20Yi&rft.date=2021-05&rft.volume=44&rft.issue=5&rft.spage=1436&rft.epage=1450&rft.pages=1436-1450&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.13995&rft_dat=%3Cproquest_osti_%3E2515889738%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4155-700f1bfe9f0d4af0e199e9cf68f0176311f3523ad0826cdc07d3618de2f4f5453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515889738&rft_id=info:pmid/33410527&rfr_iscdi=true