Loading…
Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models
Climate change, increasing atmospheric CO2, and land use change have altered biogeochemical and hydrologic cycles world-wide, with grassland systems being particularly vulnerable to resulting vegetation shifts (Komatsu et al., 2019). Therefore, incorporating plant community dynamics into ecosystem m...
Saved in:
Published in: | The New phytologist 2020-12, Vol.228 (5), p.1467-1471 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373 |
---|---|
cites | cdi_FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373 |
container_end_page | 1471 |
container_issue | 5 |
container_start_page | 1467 |
container_title | The New phytologist |
container_volume | 228 |
creator | Wilcox, Kevin R. Komatsu, Kimberly J. Avolio, Meghan L. |
description | Climate change, increasing atmospheric CO2, and land use change have altered biogeochemical and hydrologic cycles world-wide, with grassland systems being particularly vulnerable to resulting vegetation shifts (Komatsu et al., 2019). Therefore, incorporating plant community dynamics into ecosystem models is critical for accurate forecasting of ecosystem responses to global change (Levine, 2016). Process-based ecosystem models, which simulate the biogeochemical transfers of mass and energy among biota, the subsurface, and atmosphere, require representation of dynamic composition of organisms within ecosystems. For example, these models simulate leaf and plant-level characteristics, such as electron transport rate and allometry of carbon (C) allocation, to predict how net primary productivity and other ecosystem processes respond to abiotic drivers. These models are particularly useful in scaling from organismal to ecosystem levels but are still underdeveloped in their ability to capture community change, especially in grassland ecosystems. To represent compositional changes, these models must simulate competition, mortality, establishment, and reproduction of plant populations within communities. Yet, current ecosystem modeling approaches to forecast plant community change have derived from studies of forested systems and are either too coarse to capture fine-scale community dynamics (e.g. dynamic global vegetation models (DGVMs)) or too complex to be used at large spatial scales (e.g. forest gap models). |
doi_str_mv | 10.1111/nph.16900 |
format | article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1809956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26968194</jstor_id><sourcerecordid>26968194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373</originalsourceid><addsrcrecordid>eNp1kUFvFSEYRYnR2Gd14Q_QEN3oYloYGBiWTaO2SaMuNHFHeAzT8jLAk49pM_9entN2YSIbFpx7Eu5F6DUlJ7Se07i_OaFCEfIEbSgXqukpk0_RhpC2bwQXv47QC4AdIUR1on2OjhjjglAuN2i-DPucbn28xjZNk9mmbIpPEfDWlTvnInZh77O3HgpgEwcc0uAmlwGXhM1wa6J1-DobgOnwalMIc_RlwcMSTfAWsK8Om2CB4sKahpfo2WgmcK_u72P08_OnH-cXzdW3L5fnZ1eN5UySppfjwK3pOW2ZkpKMtusNG7rROj5S0ynKaDswPo5qUGzkllo5CGKl5ISNTLJj9G71Jiheg_XF2RubYnS2aNoTVfuo0IcVqkX8nh0UHTxYV8uILs2gWy77amzbg-_9P-guzTnWL1SqE5IIJXmlPq6UzQkgu1Hvsw8mL5oSfRhM18H038Eq-_beOG-DGx7Jh4UqcLoCd35yy_9N-uv3iwflmzWxg5LyY6IVSvRUcfYHkwSqZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456706974</pqid></control><display><type>article</type><title>Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models</title><source>Wiley-Blackwell Read & Publish Collection</source><source>JSTOR Archival Journals</source><creator>Wilcox, Kevin R. ; Komatsu, Kimberly J. ; Avolio, Meghan L.</creator><creatorcontrib>Wilcox, Kevin R. ; Komatsu, Kimberly J. ; Avolio, Meghan L. ; C2E Consortium ; C2E Consortium ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Climate change, increasing atmospheric CO2, and land use change have altered biogeochemical and hydrologic cycles world-wide, with grassland systems being particularly vulnerable to resulting vegetation shifts (Komatsu et al., 2019). Therefore, incorporating plant community dynamics into ecosystem models is critical for accurate forecasting of ecosystem responses to global change (Levine, 2016). Process-based ecosystem models, which simulate the biogeochemical transfers of mass and energy among biota, the subsurface, and atmosphere, require representation of dynamic composition of organisms within ecosystems. For example, these models simulate leaf and plant-level characteristics, such as electron transport rate and allometry of carbon (C) allocation, to predict how net primary productivity and other ecosystem processes respond to abiotic drivers. These models are particularly useful in scaling from organismal to ecosystem levels but are still underdeveloped in their ability to capture community change, especially in grassland ecosystems. To represent compositional changes, these models must simulate competition, mortality, establishment, and reproduction of plant populations within communities. Yet, current ecosystem modeling approaches to forecast plant community change have derived from studies of forested systems and are either too coarse to capture fine-scale community dynamics (e.g. dynamic global vegetation models (DGVMs)) or too complex to be used at large spatial scales (e.g. forest gap models).</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16900</identifier><identifier>PMID: 33460147</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>community ecology ; dynamic global vegetation model (DGVM) ; Ecology ; Ecosystem ; ecosystem function ; Ecosystem models ; Environment models ; ENVIRONMENTAL SCIENCES ; gap model ; Grassland ; grassland dynamics ; Grasslands ; Meetings ; process‐based models ; statistical models ; trait‐based models</subject><ispartof>The New phytologist, 2020-12, Vol.228 (5), p.1467-1471</ispartof><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Foundation</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373</citedby><cites>FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373</cites><orcidid>0000-0001-6829-1148 ; 0000-0001-7056-4547 ; 0000-0002-2649-9159 ; 0000000226499159 ; 0000000168291148 ; 0000000305575594 ; 0000000170564547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26968194$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26968194$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33460147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1809956$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilcox, Kevin R.</creatorcontrib><creatorcontrib>Komatsu, Kimberly J.</creatorcontrib><creatorcontrib>Avolio, Meghan L.</creatorcontrib><creatorcontrib>C2E Consortium</creatorcontrib><creatorcontrib>C2E Consortium</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Climate change, increasing atmospheric CO2, and land use change have altered biogeochemical and hydrologic cycles world-wide, with grassland systems being particularly vulnerable to resulting vegetation shifts (Komatsu et al., 2019). Therefore, incorporating plant community dynamics into ecosystem models is critical for accurate forecasting of ecosystem responses to global change (Levine, 2016). Process-based ecosystem models, which simulate the biogeochemical transfers of mass and energy among biota, the subsurface, and atmosphere, require representation of dynamic composition of organisms within ecosystems. For example, these models simulate leaf and plant-level characteristics, such as electron transport rate and allometry of carbon (C) allocation, to predict how net primary productivity and other ecosystem processes respond to abiotic drivers. These models are particularly useful in scaling from organismal to ecosystem levels but are still underdeveloped in their ability to capture community change, especially in grassland ecosystems. To represent compositional changes, these models must simulate competition, mortality, establishment, and reproduction of plant populations within communities. Yet, current ecosystem modeling approaches to forecast plant community change have derived from studies of forested systems and are either too coarse to capture fine-scale community dynamics (e.g. dynamic global vegetation models (DGVMs)) or too complex to be used at large spatial scales (e.g. forest gap models).</description><subject>community ecology</subject><subject>dynamic global vegetation model (DGVM)</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>ecosystem function</subject><subject>Ecosystem models</subject><subject>Environment models</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>gap model</subject><subject>Grassland</subject><subject>grassland dynamics</subject><subject>Grasslands</subject><subject>Meetings</subject><subject>process‐based models</subject><subject>statistical models</subject><subject>trait‐based models</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUFvFSEYRYnR2Gd14Q_QEN3oYloYGBiWTaO2SaMuNHFHeAzT8jLAk49pM_9entN2YSIbFpx7Eu5F6DUlJ7Se07i_OaFCEfIEbSgXqukpk0_RhpC2bwQXv47QC4AdIUR1on2OjhjjglAuN2i-DPucbn28xjZNk9mmbIpPEfDWlTvnInZh77O3HgpgEwcc0uAmlwGXhM1wa6J1-DobgOnwalMIc_RlwcMSTfAWsK8Om2CB4sKahpfo2WgmcK_u72P08_OnH-cXzdW3L5fnZ1eN5UySppfjwK3pOW2ZkpKMtusNG7rROj5S0ynKaDswPo5qUGzkllo5CGKl5ISNTLJj9G71Jiheg_XF2RubYnS2aNoTVfuo0IcVqkX8nh0UHTxYV8uILs2gWy77amzbg-_9P-guzTnWL1SqE5IIJXmlPq6UzQkgu1Hvsw8mL5oSfRhM18H038Eq-_beOG-DGx7Jh4UqcLoCd35yy_9N-uv3iwflmzWxg5LyY6IVSvRUcfYHkwSqZw</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Wilcox, Kevin R.</creator><creator>Komatsu, Kimberly J.</creator><creator>Avolio, Meghan L.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6829-1148</orcidid><orcidid>https://orcid.org/0000-0001-7056-4547</orcidid><orcidid>https://orcid.org/0000-0002-2649-9159</orcidid><orcidid>https://orcid.org/0000000226499159</orcidid><orcidid>https://orcid.org/0000000168291148</orcidid><orcidid>https://orcid.org/0000000305575594</orcidid><orcidid>https://orcid.org/0000000170564547</orcidid></search><sort><creationdate>202012</creationdate><title>Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models</title><author>Wilcox, Kevin R. ; Komatsu, Kimberly J. ; Avolio, Meghan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>community ecology</topic><topic>dynamic global vegetation model (DGVM)</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>ecosystem function</topic><topic>Ecosystem models</topic><topic>Environment models</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>gap model</topic><topic>Grassland</topic><topic>grassland dynamics</topic><topic>Grasslands</topic><topic>Meetings</topic><topic>process‐based models</topic><topic>statistical models</topic><topic>trait‐based models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilcox, Kevin R.</creatorcontrib><creatorcontrib>Komatsu, Kimberly J.</creatorcontrib><creatorcontrib>Avolio, Meghan L.</creatorcontrib><creatorcontrib>C2E Consortium</creatorcontrib><creatorcontrib>C2E Consortium</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilcox, Kevin R.</au><au>Komatsu, Kimberly J.</au><au>Avolio, Meghan L.</au><aucorp>C2E Consortium</aucorp><aucorp>C2E Consortium</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-12</date><risdate>2020</risdate><volume>228</volume><issue>5</issue><spage>1467</spage><epage>1471</epage><pages>1467-1471</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Climate change, increasing atmospheric CO2, and land use change have altered biogeochemical and hydrologic cycles world-wide, with grassland systems being particularly vulnerable to resulting vegetation shifts (Komatsu et al., 2019). Therefore, incorporating plant community dynamics into ecosystem models is critical for accurate forecasting of ecosystem responses to global change (Levine, 2016). Process-based ecosystem models, which simulate the biogeochemical transfers of mass and energy among biota, the subsurface, and atmosphere, require representation of dynamic composition of organisms within ecosystems. For example, these models simulate leaf and plant-level characteristics, such as electron transport rate and allometry of carbon (C) allocation, to predict how net primary productivity and other ecosystem processes respond to abiotic drivers. These models are particularly useful in scaling from organismal to ecosystem levels but are still underdeveloped in their ability to capture community change, especially in grassland ecosystems. To represent compositional changes, these models must simulate competition, mortality, establishment, and reproduction of plant populations within communities. Yet, current ecosystem modeling approaches to forecast plant community change have derived from studies of forested systems and are either too coarse to capture fine-scale community dynamics (e.g. dynamic global vegetation models (DGVMs)) or too complex to be used at large spatial scales (e.g. forest gap models).</abstract><cop>England</cop><pub>Wiley</pub><pmid>33460147</pmid><doi>10.1111/nph.16900</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6829-1148</orcidid><orcidid>https://orcid.org/0000-0001-7056-4547</orcidid><orcidid>https://orcid.org/0000-0002-2649-9159</orcidid><orcidid>https://orcid.org/0000000226499159</orcidid><orcidid>https://orcid.org/0000000168291148</orcidid><orcidid>https://orcid.org/0000000305575594</orcidid><orcidid>https://orcid.org/0000000170564547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2020-12, Vol.228 (5), p.1467-1471 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_osti_scitechconnect_1809956 |
source | Wiley-Blackwell Read & Publish Collection; JSTOR Archival Journals |
subjects | community ecology dynamic global vegetation model (DGVM) Ecology Ecosystem ecosystem function Ecosystem models Environment models ENVIRONMENTAL SCIENCES gap model Grassland grassland dynamics Grasslands Meetings process‐based models statistical models trait‐based models |
title | Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20collaborations%20between%20empiricists%20and%20modelers%20to%20advance%20grassland%20community%20dynamics%20in%20ecosystem%20models&rft.jtitle=The%20New%20phytologist&rft.au=Wilcox,%20Kevin%20R.&rft.aucorp=C2E%20Consortium&rft.date=2020-12&rft.volume=228&rft.issue=5&rft.spage=1467&rft.epage=1471&rft.pages=1467-1471&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16900&rft_dat=%3Cjstor_osti_%3E26968194%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456706974&rft_id=info:pmid/33460147&rft_jstor_id=26968194&rfr_iscdi=true |