Loading…

Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models

Climate change, increasing atmospheric CO2, and land use change have altered biogeochemical and hydrologic cycles world-wide, with grassland systems being particularly vulnerable to resulting vegetation shifts (Komatsu et al., 2019). Therefore, incorporating plant community dynamics into ecosystem m...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2020-12, Vol.228 (5), p.1467-1471
Main Authors: Wilcox, Kevin R., Komatsu, Kimberly J., Avolio, Meghan L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373
cites cdi_FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373
container_end_page 1471
container_issue 5
container_start_page 1467
container_title The New phytologist
container_volume 228
creator Wilcox, Kevin R.
Komatsu, Kimberly J.
Avolio, Meghan L.
description Climate change, increasing atmospheric CO2, and land use change have altered biogeochemical and hydrologic cycles world-wide, with grassland systems being particularly vulnerable to resulting vegetation shifts (Komatsu et al., 2019). Therefore, incorporating plant community dynamics into ecosystem models is critical for accurate forecasting of ecosystem responses to global change (Levine, 2016). Process-based ecosystem models, which simulate the biogeochemical transfers of mass and energy among biota, the subsurface, and atmosphere, require representation of dynamic composition of organisms within ecosystems. For example, these models simulate leaf and plant-level characteristics, such as electron transport rate and allometry of carbon (C) allocation, to predict how net primary productivity and other ecosystem processes respond to abiotic drivers. These models are particularly useful in scaling from organismal to ecosystem levels but are still underdeveloped in their ability to capture community change, especially in grassland ecosystems. To represent compositional changes, these models must simulate competition, mortality, establishment, and reproduction of plant populations within communities. Yet, current ecosystem modeling approaches to forecast plant community change have derived from studies of forested systems and are either too coarse to capture fine-scale community dynamics (e.g. dynamic global vegetation models (DGVMs)) or too complex to be used at large spatial scales (e.g. forest gap models).
doi_str_mv 10.1111/nph.16900
format article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1809956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26968194</jstor_id><sourcerecordid>26968194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373</originalsourceid><addsrcrecordid>eNp1kUFvFSEYRYnR2Gd14Q_QEN3oYloYGBiWTaO2SaMuNHFHeAzT8jLAk49pM_9entN2YSIbFpx7Eu5F6DUlJ7Se07i_OaFCEfIEbSgXqukpk0_RhpC2bwQXv47QC4AdIUR1on2OjhjjglAuN2i-DPucbn28xjZNk9mmbIpPEfDWlTvnInZh77O3HgpgEwcc0uAmlwGXhM1wa6J1-DobgOnwalMIc_RlwcMSTfAWsK8Om2CB4sKahpfo2WgmcK_u72P08_OnH-cXzdW3L5fnZ1eN5UySppfjwK3pOW2ZkpKMtusNG7rROj5S0ynKaDswPo5qUGzkllo5CGKl5ISNTLJj9G71Jiheg_XF2RubYnS2aNoTVfuo0IcVqkX8nh0UHTxYV8uILs2gWy77amzbg-_9P-guzTnWL1SqE5IIJXmlPq6UzQkgu1Hvsw8mL5oSfRhM18H038Eq-_beOG-DGx7Jh4UqcLoCd35yy_9N-uv3iwflmzWxg5LyY6IVSvRUcfYHkwSqZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456706974</pqid></control><display><type>article</type><title>Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>JSTOR Archival Journals</source><creator>Wilcox, Kevin R. ; Komatsu, Kimberly J. ; Avolio, Meghan L.</creator><creatorcontrib>Wilcox, Kevin R. ; Komatsu, Kimberly J. ; Avolio, Meghan L. ; C2E Consortium ; C2E Consortium ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Climate change, increasing atmospheric CO2, and land use change have altered biogeochemical and hydrologic cycles world-wide, with grassland systems being particularly vulnerable to resulting vegetation shifts (Komatsu et al., 2019). Therefore, incorporating plant community dynamics into ecosystem models is critical for accurate forecasting of ecosystem responses to global change (Levine, 2016). Process-based ecosystem models, which simulate the biogeochemical transfers of mass and energy among biota, the subsurface, and atmosphere, require representation of dynamic composition of organisms within ecosystems. For example, these models simulate leaf and plant-level characteristics, such as electron transport rate and allometry of carbon (C) allocation, to predict how net primary productivity and other ecosystem processes respond to abiotic drivers. These models are particularly useful in scaling from organismal to ecosystem levels but are still underdeveloped in their ability to capture community change, especially in grassland ecosystems. To represent compositional changes, these models must simulate competition, mortality, establishment, and reproduction of plant populations within communities. Yet, current ecosystem modeling approaches to forecast plant community change have derived from studies of forested systems and are either too coarse to capture fine-scale community dynamics (e.g. dynamic global vegetation models (DGVMs)) or too complex to be used at large spatial scales (e.g. forest gap models).</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16900</identifier><identifier>PMID: 33460147</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>community ecology ; dynamic global vegetation model (DGVM) ; Ecology ; Ecosystem ; ecosystem function ; Ecosystem models ; Environment models ; ENVIRONMENTAL SCIENCES ; gap model ; Grassland ; grassland dynamics ; Grasslands ; Meetings ; process‐based models ; statistical models ; trait‐based models</subject><ispartof>The New phytologist, 2020-12, Vol.228 (5), p.1467-1471</ispartof><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Foundation</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373</citedby><cites>FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373</cites><orcidid>0000-0001-6829-1148 ; 0000-0001-7056-4547 ; 0000-0002-2649-9159 ; 0000000226499159 ; 0000000168291148 ; 0000000305575594 ; 0000000170564547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26968194$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26968194$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33460147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1809956$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilcox, Kevin R.</creatorcontrib><creatorcontrib>Komatsu, Kimberly J.</creatorcontrib><creatorcontrib>Avolio, Meghan L.</creatorcontrib><creatorcontrib>C2E Consortium</creatorcontrib><creatorcontrib>C2E Consortium</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Climate change, increasing atmospheric CO2, and land use change have altered biogeochemical and hydrologic cycles world-wide, with grassland systems being particularly vulnerable to resulting vegetation shifts (Komatsu et al., 2019). Therefore, incorporating plant community dynamics into ecosystem models is critical for accurate forecasting of ecosystem responses to global change (Levine, 2016). Process-based ecosystem models, which simulate the biogeochemical transfers of mass and energy among biota, the subsurface, and atmosphere, require representation of dynamic composition of organisms within ecosystems. For example, these models simulate leaf and plant-level characteristics, such as electron transport rate and allometry of carbon (C) allocation, to predict how net primary productivity and other ecosystem processes respond to abiotic drivers. These models are particularly useful in scaling from organismal to ecosystem levels but are still underdeveloped in their ability to capture community change, especially in grassland ecosystems. To represent compositional changes, these models must simulate competition, mortality, establishment, and reproduction of plant populations within communities. Yet, current ecosystem modeling approaches to forecast plant community change have derived from studies of forested systems and are either too coarse to capture fine-scale community dynamics (e.g. dynamic global vegetation models (DGVMs)) or too complex to be used at large spatial scales (e.g. forest gap models).</description><subject>community ecology</subject><subject>dynamic global vegetation model (DGVM)</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>ecosystem function</subject><subject>Ecosystem models</subject><subject>Environment models</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>gap model</subject><subject>Grassland</subject><subject>grassland dynamics</subject><subject>Grasslands</subject><subject>Meetings</subject><subject>process‐based models</subject><subject>statistical models</subject><subject>trait‐based models</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUFvFSEYRYnR2Gd14Q_QEN3oYloYGBiWTaO2SaMuNHFHeAzT8jLAk49pM_9entN2YSIbFpx7Eu5F6DUlJ7Se07i_OaFCEfIEbSgXqukpk0_RhpC2bwQXv47QC4AdIUR1on2OjhjjglAuN2i-DPucbn28xjZNk9mmbIpPEfDWlTvnInZh77O3HgpgEwcc0uAmlwGXhM1wa6J1-DobgOnwalMIc_RlwcMSTfAWsK8Om2CB4sKahpfo2WgmcK_u72P08_OnH-cXzdW3L5fnZ1eN5UySppfjwK3pOW2ZkpKMtusNG7rROj5S0ynKaDswPo5qUGzkllo5CGKl5ISNTLJj9G71Jiheg_XF2RubYnS2aNoTVfuo0IcVqkX8nh0UHTxYV8uILs2gWy77amzbg-_9P-guzTnWL1SqE5IIJXmlPq6UzQkgu1Hvsw8mL5oSfRhM18H038Eq-_beOG-DGx7Jh4UqcLoCd35yy_9N-uv3iwflmzWxg5LyY6IVSvRUcfYHkwSqZw</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Wilcox, Kevin R.</creator><creator>Komatsu, Kimberly J.</creator><creator>Avolio, Meghan L.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6829-1148</orcidid><orcidid>https://orcid.org/0000-0001-7056-4547</orcidid><orcidid>https://orcid.org/0000-0002-2649-9159</orcidid><orcidid>https://orcid.org/0000000226499159</orcidid><orcidid>https://orcid.org/0000000168291148</orcidid><orcidid>https://orcid.org/0000000305575594</orcidid><orcidid>https://orcid.org/0000000170564547</orcidid></search><sort><creationdate>202012</creationdate><title>Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models</title><author>Wilcox, Kevin R. ; Komatsu, Kimberly J. ; Avolio, Meghan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>community ecology</topic><topic>dynamic global vegetation model (DGVM)</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>ecosystem function</topic><topic>Ecosystem models</topic><topic>Environment models</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>gap model</topic><topic>Grassland</topic><topic>grassland dynamics</topic><topic>Grasslands</topic><topic>Meetings</topic><topic>process‐based models</topic><topic>statistical models</topic><topic>trait‐based models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilcox, Kevin R.</creatorcontrib><creatorcontrib>Komatsu, Kimberly J.</creatorcontrib><creatorcontrib>Avolio, Meghan L.</creatorcontrib><creatorcontrib>C2E Consortium</creatorcontrib><creatorcontrib>C2E Consortium</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilcox, Kevin R.</au><au>Komatsu, Kimberly J.</au><au>Avolio, Meghan L.</au><aucorp>C2E Consortium</aucorp><aucorp>C2E Consortium</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-12</date><risdate>2020</risdate><volume>228</volume><issue>5</issue><spage>1467</spage><epage>1471</epage><pages>1467-1471</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Climate change, increasing atmospheric CO2, and land use change have altered biogeochemical and hydrologic cycles world-wide, with grassland systems being particularly vulnerable to resulting vegetation shifts (Komatsu et al., 2019). Therefore, incorporating plant community dynamics into ecosystem models is critical for accurate forecasting of ecosystem responses to global change (Levine, 2016). Process-based ecosystem models, which simulate the biogeochemical transfers of mass and energy among biota, the subsurface, and atmosphere, require representation of dynamic composition of organisms within ecosystems. For example, these models simulate leaf and plant-level characteristics, such as electron transport rate and allometry of carbon (C) allocation, to predict how net primary productivity and other ecosystem processes respond to abiotic drivers. These models are particularly useful in scaling from organismal to ecosystem levels but are still underdeveloped in their ability to capture community change, especially in grassland ecosystems. To represent compositional changes, these models must simulate competition, mortality, establishment, and reproduction of plant populations within communities. Yet, current ecosystem modeling approaches to forecast plant community change have derived from studies of forested systems and are either too coarse to capture fine-scale community dynamics (e.g. dynamic global vegetation models (DGVMs)) or too complex to be used at large spatial scales (e.g. forest gap models).</abstract><cop>England</cop><pub>Wiley</pub><pmid>33460147</pmid><doi>10.1111/nph.16900</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6829-1148</orcidid><orcidid>https://orcid.org/0000-0001-7056-4547</orcidid><orcidid>https://orcid.org/0000-0002-2649-9159</orcidid><orcidid>https://orcid.org/0000000226499159</orcidid><orcidid>https://orcid.org/0000000168291148</orcidid><orcidid>https://orcid.org/0000000305575594</orcidid><orcidid>https://orcid.org/0000000170564547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2020-12, Vol.228 (5), p.1467-1471
issn 0028-646X
1469-8137
language eng
recordid cdi_osti_scitechconnect_1809956
source Wiley-Blackwell Read & Publish Collection; JSTOR Archival Journals
subjects community ecology
dynamic global vegetation model (DGVM)
Ecology
Ecosystem
ecosystem function
Ecosystem models
Environment models
ENVIRONMENTAL SCIENCES
gap model
Grassland
grassland dynamics
Grasslands
Meetings
process‐based models
statistical models
trait‐based models
title Improving collaborations between empiricists and modelers to advance grassland community dynamics in ecosystem models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20collaborations%20between%20empiricists%20and%20modelers%20to%20advance%20grassland%20community%20dynamics%20in%20ecosystem%20models&rft.jtitle=The%20New%20phytologist&rft.au=Wilcox,%20Kevin%20R.&rft.aucorp=C2E%20Consortium&rft.date=2020-12&rft.volume=228&rft.issue=5&rft.spage=1467&rft.epage=1471&rft.pages=1467-1471&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16900&rft_dat=%3Cjstor_osti_%3E26968194%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4370-87fd4ca841239770fc58a3d5fce4f1a591312d34ff9d93f4c1c7d60c77403f373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456706974&rft_id=info:pmid/33460147&rft_jstor_id=26968194&rfr_iscdi=true