Loading…

Engineering improved ethylene production: Leveraging systems biology and adaptive laboratory evolution

Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produce...

Full description

Saved in:
Bibliographic Details
Published in:Metabolic engineering 2021-09, Vol.67, p.308-320
Main Authors: Vaud, Sophie, Pearcy, Nicole, Hanževački, Marko, Van Hagen, Alexander M.W., Abdelrazig, Salah, Safo, Laudina, Ehsaan, Muhammad, Jonczyk, Magdalene, Millat, Thomas, Craig, Sean, Spence, Edward, Fothergill, James, Bommareddy, Rajesh Reddy, Colin, Pierre-Yves, Twycross, Jamie, Dalby, Paul A., Minton, Nigel P., Jäger, Christof M., Kim, Dong-Hyun, Yu, Jianping, Maness, Pin-Ching, Lynch, Sean, Eckert, Carrie A., Conradie, Alex, Bryan, Samantha J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-31423da974193f46af44db350dc50e334849df46cb6a6c4f4522b7f8944464433
cites cdi_FETCH-LOGICAL-c408t-31423da974193f46af44db350dc50e334849df46cb6a6c4f4522b7f8944464433
container_end_page 320
container_issue
container_start_page 308
container_title Metabolic engineering
container_volume 67
creator Vaud, Sophie
Pearcy, Nicole
Hanževački, Marko
Van Hagen, Alexander M.W.
Abdelrazig, Salah
Safo, Laudina
Ehsaan, Muhammad
Jonczyk, Magdalene
Millat, Thomas
Craig, Sean
Spence, Edward
Fothergill, James
Bommareddy, Rajesh Reddy
Colin, Pierre-Yves
Twycross, Jamie
Dalby, Paul A.
Minton, Nigel P.
Jäger, Christof M.
Kim, Dong-Hyun
Yu, Jianping
Maness, Pin-Ching
Lynch, Sean
Eckert, Carrie A.
Conradie, Alex
Bryan, Samantha J.
description Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene-forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including Escherichia coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate-limiting steps in biological ethylene production. We employed a combination of genome-scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to EFE (wild type versus mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges. •First example of growth-coupled ethylene production.•Increased ethylene productivity in E. coli 49-fold.•Increased ethylene-forming enzyme (EFE) solubility in vivo.•Distal mutations in EFE influence the active site.
doi_str_mv 10.1016/j.ymben.2021.07.001
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1810732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717621001117</els_id><sourcerecordid>2550265815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-31423da974193f46af44db350dc50e334849df46cb6a6c4f4522b7f8944464433</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOI7-AjfBlZupSZO-BBci4wMG3Og6pMntTIY2GZO00H9v6ohLV_fBdy7nniS5JjglmBR3-3TqGzBphjOS4jLFmJwkC4LrYlWSip3-9WVxnlx4v48AyWuySNq12WoD4LTZIt0fnB1BIQi7qQMDKM5qkEFbc482MIIT2xn0kw_Qe9Ro29nthIRRSChxCHoE1InGOhGsmxCMthtm9WVy1orOw9VvXSafz-uPp9fV5v3l7elxs5IMV2FFCcuoEnXJSE1bVoiWMdXQHCuZY6CUVaxWcS-bQhSStSzPsqZsq5oxVjBG6TK5Od61PmjupQ4gd9IaAzJwUhFc0ixCt0cofvc1gA-8115C1wkDdvA8y3OcFXlF8ojSIyqd9d5Byw9O98JNnGA-R8_3_Cd6PkfPccljslH1cFRBfHXU4GYnYCQo7WYjyup_9d-n0o7x</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550265815</pqid></control><display><type>article</type><title>Engineering improved ethylene production: Leveraging systems biology and adaptive laboratory evolution</title><source>ScienceDirect Freedom Collection</source><creator>Vaud, Sophie ; Pearcy, Nicole ; Hanževački, Marko ; Van Hagen, Alexander M.W. ; Abdelrazig, Salah ; Safo, Laudina ; Ehsaan, Muhammad ; Jonczyk, Magdalene ; Millat, Thomas ; Craig, Sean ; Spence, Edward ; Fothergill, James ; Bommareddy, Rajesh Reddy ; Colin, Pierre-Yves ; Twycross, Jamie ; Dalby, Paul A. ; Minton, Nigel P. ; Jäger, Christof M. ; Kim, Dong-Hyun ; Yu, Jianping ; Maness, Pin-Ching ; Lynch, Sean ; Eckert, Carrie A. ; Conradie, Alex ; Bryan, Samantha J.</creator><creatorcontrib>Vaud, Sophie ; Pearcy, Nicole ; Hanževački, Marko ; Van Hagen, Alexander M.W. ; Abdelrazig, Salah ; Safo, Laudina ; Ehsaan, Muhammad ; Jonczyk, Magdalene ; Millat, Thomas ; Craig, Sean ; Spence, Edward ; Fothergill, James ; Bommareddy, Rajesh Reddy ; Colin, Pierre-Yves ; Twycross, Jamie ; Dalby, Paul A. ; Minton, Nigel P. ; Jäger, Christof M. ; Kim, Dong-Hyun ; Yu, Jianping ; Maness, Pin-Ching ; Lynch, Sean ; Eckert, Carrie A. ; Conradie, Alex ; Bryan, Samantha J. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene-forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including Escherichia coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate-limiting steps in biological ethylene production. We employed a combination of genome-scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to EFE (wild type versus mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges. •First example of growth-coupled ethylene production.•Increased ethylene productivity in E. coli 49-fold.•Increased ethylene-forming enzyme (EFE) solubility in vivo.•Distal mutations in EFE influence the active site.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2021.07.001</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptive evolution ; BASIC BIOLOGICAL SCIENCES ; Directed evolution ; E. coli ; ethylene ; ethylene forming enzyme ; Fermentation ; laboratory evolution ; Metabolic engineering ; protein engineering ; Systems biology</subject><ispartof>Metabolic engineering, 2021-09, Vol.67, p.308-320</ispartof><rights>2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-31423da974193f46af44db350dc50e334849df46cb6a6c4f4522b7f8944464433</citedby><cites>FETCH-LOGICAL-c408t-31423da974193f46af44db350dc50e334849df46cb6a6c4f4522b7f8944464433</cites><orcidid>0000-0002-5023-4142 ; 0000-0003-2117-1143 ; 0000-0002-3071-3453 ; 0000-0002-8415-4060 ; 0000-0003-0466-3197 ; 0000-0002-1684-0886 ; 0000-0002-3689-2130 ; 0000-0003-1841-8977 ; 0000-0003-1393-5246 ; 0000000318418977 ; 0000000313935246 ; 0000000236892130 ; 0000000216840886 ; 0000000284154060 ; 0000000250234142 ; 0000000304663197 ; 0000000321171143 ; 0000000230713453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1810732$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaud, Sophie</creatorcontrib><creatorcontrib>Pearcy, Nicole</creatorcontrib><creatorcontrib>Hanževački, Marko</creatorcontrib><creatorcontrib>Van Hagen, Alexander M.W.</creatorcontrib><creatorcontrib>Abdelrazig, Salah</creatorcontrib><creatorcontrib>Safo, Laudina</creatorcontrib><creatorcontrib>Ehsaan, Muhammad</creatorcontrib><creatorcontrib>Jonczyk, Magdalene</creatorcontrib><creatorcontrib>Millat, Thomas</creatorcontrib><creatorcontrib>Craig, Sean</creatorcontrib><creatorcontrib>Spence, Edward</creatorcontrib><creatorcontrib>Fothergill, James</creatorcontrib><creatorcontrib>Bommareddy, Rajesh Reddy</creatorcontrib><creatorcontrib>Colin, Pierre-Yves</creatorcontrib><creatorcontrib>Twycross, Jamie</creatorcontrib><creatorcontrib>Dalby, Paul A.</creatorcontrib><creatorcontrib>Minton, Nigel P.</creatorcontrib><creatorcontrib>Jäger, Christof M.</creatorcontrib><creatorcontrib>Kim, Dong-Hyun</creatorcontrib><creatorcontrib>Yu, Jianping</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Lynch, Sean</creatorcontrib><creatorcontrib>Eckert, Carrie A.</creatorcontrib><creatorcontrib>Conradie, Alex</creatorcontrib><creatorcontrib>Bryan, Samantha J.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Engineering improved ethylene production: Leveraging systems biology and adaptive laboratory evolution</title><title>Metabolic engineering</title><description>Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene-forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including Escherichia coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate-limiting steps in biological ethylene production. We employed a combination of genome-scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to EFE (wild type versus mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges. •First example of growth-coupled ethylene production.•Increased ethylene productivity in E. coli 49-fold.•Increased ethylene-forming enzyme (EFE) solubility in vivo.•Distal mutations in EFE influence the active site.</description><subject>Adaptive evolution</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Directed evolution</subject><subject>E. coli</subject><subject>ethylene</subject><subject>ethylene forming enzyme</subject><subject>Fermentation</subject><subject>laboratory evolution</subject><subject>Metabolic engineering</subject><subject>protein engineering</subject><subject>Systems biology</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYsoOI7-AjfBlZupSZO-BBci4wMG3Og6pMntTIY2GZO00H9v6ohLV_fBdy7nniS5JjglmBR3-3TqGzBphjOS4jLFmJwkC4LrYlWSip3-9WVxnlx4v48AyWuySNq12WoD4LTZIt0fnB1BIQi7qQMDKM5qkEFbc482MIIT2xn0kw_Qe9Ro29nthIRRSChxCHoE1InGOhGsmxCMthtm9WVy1orOw9VvXSafz-uPp9fV5v3l7elxs5IMV2FFCcuoEnXJSE1bVoiWMdXQHCuZY6CUVaxWcS-bQhSStSzPsqZsq5oxVjBG6TK5Od61PmjupQ4gd9IaAzJwUhFc0ixCt0cofvc1gA-8115C1wkDdvA8y3OcFXlF8ojSIyqd9d5Byw9O98JNnGA-R8_3_Cd6PkfPccljslH1cFRBfHXU4GYnYCQo7WYjyup_9d-n0o7x</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Vaud, Sophie</creator><creator>Pearcy, Nicole</creator><creator>Hanževački, Marko</creator><creator>Van Hagen, Alexander M.W.</creator><creator>Abdelrazig, Salah</creator><creator>Safo, Laudina</creator><creator>Ehsaan, Muhammad</creator><creator>Jonczyk, Magdalene</creator><creator>Millat, Thomas</creator><creator>Craig, Sean</creator><creator>Spence, Edward</creator><creator>Fothergill, James</creator><creator>Bommareddy, Rajesh Reddy</creator><creator>Colin, Pierre-Yves</creator><creator>Twycross, Jamie</creator><creator>Dalby, Paul A.</creator><creator>Minton, Nigel P.</creator><creator>Jäger, Christof M.</creator><creator>Kim, Dong-Hyun</creator><creator>Yu, Jianping</creator><creator>Maness, Pin-Ching</creator><creator>Lynch, Sean</creator><creator>Eckert, Carrie A.</creator><creator>Conradie, Alex</creator><creator>Bryan, Samantha J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5023-4142</orcidid><orcidid>https://orcid.org/0000-0003-2117-1143</orcidid><orcidid>https://orcid.org/0000-0002-3071-3453</orcidid><orcidid>https://orcid.org/0000-0002-8415-4060</orcidid><orcidid>https://orcid.org/0000-0003-0466-3197</orcidid><orcidid>https://orcid.org/0000-0002-1684-0886</orcidid><orcidid>https://orcid.org/0000-0002-3689-2130</orcidid><orcidid>https://orcid.org/0000-0003-1841-8977</orcidid><orcidid>https://orcid.org/0000-0003-1393-5246</orcidid><orcidid>https://orcid.org/0000000318418977</orcidid><orcidid>https://orcid.org/0000000313935246</orcidid><orcidid>https://orcid.org/0000000236892130</orcidid><orcidid>https://orcid.org/0000000216840886</orcidid><orcidid>https://orcid.org/0000000284154060</orcidid><orcidid>https://orcid.org/0000000250234142</orcidid><orcidid>https://orcid.org/0000000304663197</orcidid><orcidid>https://orcid.org/0000000321171143</orcidid><orcidid>https://orcid.org/0000000230713453</orcidid></search><sort><creationdate>20210901</creationdate><title>Engineering improved ethylene production: Leveraging systems biology and adaptive laboratory evolution</title><author>Vaud, Sophie ; Pearcy, Nicole ; Hanževački, Marko ; Van Hagen, Alexander M.W. ; Abdelrazig, Salah ; Safo, Laudina ; Ehsaan, Muhammad ; Jonczyk, Magdalene ; Millat, Thomas ; Craig, Sean ; Spence, Edward ; Fothergill, James ; Bommareddy, Rajesh Reddy ; Colin, Pierre-Yves ; Twycross, Jamie ; Dalby, Paul A. ; Minton, Nigel P. ; Jäger, Christof M. ; Kim, Dong-Hyun ; Yu, Jianping ; Maness, Pin-Ching ; Lynch, Sean ; Eckert, Carrie A. ; Conradie, Alex ; Bryan, Samantha J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-31423da974193f46af44db350dc50e334849df46cb6a6c4f4522b7f8944464433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive evolution</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Directed evolution</topic><topic>E. coli</topic><topic>ethylene</topic><topic>ethylene forming enzyme</topic><topic>Fermentation</topic><topic>laboratory evolution</topic><topic>Metabolic engineering</topic><topic>protein engineering</topic><topic>Systems biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaud, Sophie</creatorcontrib><creatorcontrib>Pearcy, Nicole</creatorcontrib><creatorcontrib>Hanževački, Marko</creatorcontrib><creatorcontrib>Van Hagen, Alexander M.W.</creatorcontrib><creatorcontrib>Abdelrazig, Salah</creatorcontrib><creatorcontrib>Safo, Laudina</creatorcontrib><creatorcontrib>Ehsaan, Muhammad</creatorcontrib><creatorcontrib>Jonczyk, Magdalene</creatorcontrib><creatorcontrib>Millat, Thomas</creatorcontrib><creatorcontrib>Craig, Sean</creatorcontrib><creatorcontrib>Spence, Edward</creatorcontrib><creatorcontrib>Fothergill, James</creatorcontrib><creatorcontrib>Bommareddy, Rajesh Reddy</creatorcontrib><creatorcontrib>Colin, Pierre-Yves</creatorcontrib><creatorcontrib>Twycross, Jamie</creatorcontrib><creatorcontrib>Dalby, Paul A.</creatorcontrib><creatorcontrib>Minton, Nigel P.</creatorcontrib><creatorcontrib>Jäger, Christof M.</creatorcontrib><creatorcontrib>Kim, Dong-Hyun</creatorcontrib><creatorcontrib>Yu, Jianping</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Lynch, Sean</creatorcontrib><creatorcontrib>Eckert, Carrie A.</creatorcontrib><creatorcontrib>Conradie, Alex</creatorcontrib><creatorcontrib>Bryan, Samantha J.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaud, Sophie</au><au>Pearcy, Nicole</au><au>Hanževački, Marko</au><au>Van Hagen, Alexander M.W.</au><au>Abdelrazig, Salah</au><au>Safo, Laudina</au><au>Ehsaan, Muhammad</au><au>Jonczyk, Magdalene</au><au>Millat, Thomas</au><au>Craig, Sean</au><au>Spence, Edward</au><au>Fothergill, James</au><au>Bommareddy, Rajesh Reddy</au><au>Colin, Pierre-Yves</au><au>Twycross, Jamie</au><au>Dalby, Paul A.</au><au>Minton, Nigel P.</au><au>Jäger, Christof M.</au><au>Kim, Dong-Hyun</au><au>Yu, Jianping</au><au>Maness, Pin-Ching</au><au>Lynch, Sean</au><au>Eckert, Carrie A.</au><au>Conradie, Alex</au><au>Bryan, Samantha J.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering improved ethylene production: Leveraging systems biology and adaptive laboratory evolution</atitle><jtitle>Metabolic engineering</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>67</volume><spage>308</spage><epage>320</epage><pages>308-320</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene-forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including Escherichia coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate-limiting steps in biological ethylene production. We employed a combination of genome-scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to EFE (wild type versus mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges. •First example of growth-coupled ethylene production.•Increased ethylene productivity in E. coli 49-fold.•Increased ethylene-forming enzyme (EFE) solubility in vivo.•Distal mutations in EFE influence the active site.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ymben.2021.07.001</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5023-4142</orcidid><orcidid>https://orcid.org/0000-0003-2117-1143</orcidid><orcidid>https://orcid.org/0000-0002-3071-3453</orcidid><orcidid>https://orcid.org/0000-0002-8415-4060</orcidid><orcidid>https://orcid.org/0000-0003-0466-3197</orcidid><orcidid>https://orcid.org/0000-0002-1684-0886</orcidid><orcidid>https://orcid.org/0000-0002-3689-2130</orcidid><orcidid>https://orcid.org/0000-0003-1841-8977</orcidid><orcidid>https://orcid.org/0000-0003-1393-5246</orcidid><orcidid>https://orcid.org/0000000318418977</orcidid><orcidid>https://orcid.org/0000000313935246</orcidid><orcidid>https://orcid.org/0000000236892130</orcidid><orcidid>https://orcid.org/0000000216840886</orcidid><orcidid>https://orcid.org/0000000284154060</orcidid><orcidid>https://orcid.org/0000000250234142</orcidid><orcidid>https://orcid.org/0000000304663197</orcidid><orcidid>https://orcid.org/0000000321171143</orcidid><orcidid>https://orcid.org/0000000230713453</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2021-09, Vol.67, p.308-320
issn 1096-7176
1096-7184
language eng
recordid cdi_osti_scitechconnect_1810732
source ScienceDirect Freedom Collection
subjects Adaptive evolution
BASIC BIOLOGICAL SCIENCES
Directed evolution
E. coli
ethylene
ethylene forming enzyme
Fermentation
laboratory evolution
Metabolic engineering
protein engineering
Systems biology
title Engineering improved ethylene production: Leveraging systems biology and adaptive laboratory evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20improved%20ethylene%20production:%20Leveraging%20systems%20biology%20and%20adaptive%20laboratory%20evolution&rft.jtitle=Metabolic%20engineering&rft.au=Vaud,%20Sophie&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2021-09-01&rft.volume=67&rft.spage=308&rft.epage=320&rft.pages=308-320&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2021.07.001&rft_dat=%3Cproquest_osti_%3E2550265815%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-31423da974193f46af44db350dc50e334849df46cb6a6c4f4522b7f8944464433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550265815&rft_id=info:pmid/&rfr_iscdi=true