Loading…
Simulated lightning strike investigation of CFRP comprising a novel polyaniline/phenol based electrically conductive resin matrix
Traditional carbon fiber reinforced plastics (CFRPs) have been reported to exhibit lower electrical conductivity in the through-thickness direction, and have since paved the path for developing new resin systems to improve the through-thickness electrical conductivity and functionality of CFRP lamin...
Saved in:
Published in: | Composites science and technology 2021-09, Vol.214 (C), p.108971, Article 108971 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Traditional carbon fiber reinforced plastics (CFRPs) have been reported to exhibit lower electrical conductivity in the through-thickness direction, and have since paved the path for developing new resin systems to improve the through-thickness electrical conductivity and functionality of CFRP laminates. This study designs and investigates a novel Polyaniline (PANI)/Phenol resin, which possesses high electrical conductivity and mechanical strength. The CFRP manufactured by this PANI/Phenol resin with an addition of up to (~23.30%) phenol resulted in 0.6 S/cm through-thickness conductivity and demonstrated flexural strength and modulus values of 477 MPa and 59.2 GPa, respectively. We further evaluate the effectiveness of lightning strike protection of PANI/Phenol-based conductive CFRP laminates with a simulated lightning strike test. In essence, this research reports on PANI/Phenol-based CFRP's effectiveness as a material for lightning suppression without applying traditional metal-based lightning strike protection (LSP) systems.
[Display omitted] |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2021.108971 |