Loading…
Time-resolved turbulent dynamo in a laser plasma
Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by expe...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2021-03, Vol.118 (11) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Bott, Archie A. Tzeferacos, Petros Chen, Laura Palmer, Charlotte J. Rigby, Alexandra Bell, Anthony R. Bingham, Robert Birkel, Andrew Graziani, Carlo Froula, Dustin H. Katz, Joseph Koenig, Michel Kunz, Matthew W. Li, Chikang Meinecke, Jena Miniati, Francesco Petrasso, Richard Park, Hye-Sook Remington, Bruce A. Reville, Brian Ross, J. Steven Ryu, Dongsu Ryutov, Dmitri Séguin, Fredrick H. White, Thomas G. Schekochihin, Alexander A. Lamb, Donald Q. Gregori, Gianluca |
description | Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm < 1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm ≳ 1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm ≳ 1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Here, our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1812561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812561</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18125613</originalsourceid><addsrcrecordid>eNqNyksKwjAQANAgCtbPHYL7wCS2NVmL4gG6LzEdMZImkkkFb68LD-Dqbd6MVRKMFG1tYM4qAHUQulb1kq2IHgBgGg0Vg86PKDJSCi8ceJnydQoYCx_e0Y6J-8gtD5Yw8-eX0W7Y4mYD4fbnmu3Op-54EYmK78n5gu7uUozoSi-1VE0r93-lD_BLNFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-resolved turbulent dynamo in a laser plasma</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Bott, Archie A. ; Tzeferacos, Petros ; Chen, Laura ; Palmer, Charlotte J. ; Rigby, Alexandra ; Bell, Anthony R. ; Bingham, Robert ; Birkel, Andrew ; Graziani, Carlo ; Froula, Dustin H. ; Katz, Joseph ; Koenig, Michel ; Kunz, Matthew W. ; Li, Chikang ; Meinecke, Jena ; Miniati, Francesco ; Petrasso, Richard ; Park, Hye-Sook ; Remington, Bruce A. ; Reville, Brian ; Ross, J. Steven ; Ryu, Dongsu ; Ryutov, Dmitri ; Séguin, Fredrick H. ; White, Thomas G. ; Schekochihin, Alexander A. ; Lamb, Donald Q. ; Gregori, Gianluca</creator><creatorcontrib>Bott, Archie A. ; Tzeferacos, Petros ; Chen, Laura ; Palmer, Charlotte J. ; Rigby, Alexandra ; Bell, Anthony R. ; Bingham, Robert ; Birkel, Andrew ; Graziani, Carlo ; Froula, Dustin H. ; Katz, Joseph ; Koenig, Michel ; Kunz, Matthew W. ; Li, Chikang ; Meinecke, Jena ; Miniati, Francesco ; Petrasso, Richard ; Park, Hye-Sook ; Remington, Bruce A. ; Reville, Brian ; Ross, J. Steven ; Ryu, Dongsu ; Ryutov, Dmitri ; Séguin, Fredrick H. ; White, Thomas G. ; Schekochihin, Alexander A. ; Lamb, Donald Q. ; Gregori, Gianluca ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Univ. of Rochester, NY (United States). Lab. for Laser Energetics ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm < 1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm ≳ 1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm ≳ 1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Here, our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; fluctuation dynamo ; laboratory astrophysics ; magnetic fields ; Physics - Plasma physics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (11)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000241530628 ; 0000000254552957 ; 0000000169813956 ; 0000000345195238 ; 0000000170408894 ; 0000000298437635 ; 0000000180713083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1812561$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bott, Archie A.</creatorcontrib><creatorcontrib>Tzeferacos, Petros</creatorcontrib><creatorcontrib>Chen, Laura</creatorcontrib><creatorcontrib>Palmer, Charlotte J.</creatorcontrib><creatorcontrib>Rigby, Alexandra</creatorcontrib><creatorcontrib>Bell, Anthony R.</creatorcontrib><creatorcontrib>Bingham, Robert</creatorcontrib><creatorcontrib>Birkel, Andrew</creatorcontrib><creatorcontrib>Graziani, Carlo</creatorcontrib><creatorcontrib>Froula, Dustin H.</creatorcontrib><creatorcontrib>Katz, Joseph</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Kunz, Matthew W.</creatorcontrib><creatorcontrib>Li, Chikang</creatorcontrib><creatorcontrib>Meinecke, Jena</creatorcontrib><creatorcontrib>Miniati, Francesco</creatorcontrib><creatorcontrib>Petrasso, Richard</creatorcontrib><creatorcontrib>Park, Hye-Sook</creatorcontrib><creatorcontrib>Remington, Bruce A.</creatorcontrib><creatorcontrib>Reville, Brian</creatorcontrib><creatorcontrib>Ross, J. Steven</creatorcontrib><creatorcontrib>Ryu, Dongsu</creatorcontrib><creatorcontrib>Ryutov, Dmitri</creatorcontrib><creatorcontrib>Séguin, Fredrick H.</creatorcontrib><creatorcontrib>White, Thomas G.</creatorcontrib><creatorcontrib>Schekochihin, Alexander A.</creatorcontrib><creatorcontrib>Lamb, Donald Q.</creatorcontrib><creatorcontrib>Gregori, Gianluca</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Time-resolved turbulent dynamo in a laser plasma</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm < 1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm ≳ 1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm ≳ 1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Here, our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>fluctuation dynamo</subject><subject>laboratory astrophysics</subject><subject>magnetic fields</subject><subject>Physics - Plasma physics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNyksKwjAQANAgCtbPHYL7wCS2NVmL4gG6LzEdMZImkkkFb68LD-Dqbd6MVRKMFG1tYM4qAHUQulb1kq2IHgBgGg0Vg86PKDJSCi8ceJnydQoYCx_e0Y6J-8gtD5Yw8-eX0W7Y4mYD4fbnmu3Op-54EYmK78n5gu7uUozoSi-1VE0r93-lD_BLNFI</recordid><startdate>20210308</startdate><enddate>20210308</enddate><creator>Bott, Archie A.</creator><creator>Tzeferacos, Petros</creator><creator>Chen, Laura</creator><creator>Palmer, Charlotte J.</creator><creator>Rigby, Alexandra</creator><creator>Bell, Anthony R.</creator><creator>Bingham, Robert</creator><creator>Birkel, Andrew</creator><creator>Graziani, Carlo</creator><creator>Froula, Dustin H.</creator><creator>Katz, Joseph</creator><creator>Koenig, Michel</creator><creator>Kunz, Matthew W.</creator><creator>Li, Chikang</creator><creator>Meinecke, Jena</creator><creator>Miniati, Francesco</creator><creator>Petrasso, Richard</creator><creator>Park, Hye-Sook</creator><creator>Remington, Bruce A.</creator><creator>Reville, Brian</creator><creator>Ross, J. Steven</creator><creator>Ryu, Dongsu</creator><creator>Ryutov, Dmitri</creator><creator>Séguin, Fredrick H.</creator><creator>White, Thomas G.</creator><creator>Schekochihin, Alexander A.</creator><creator>Lamb, Donald Q.</creator><creator>Gregori, Gianluca</creator><general>National Academy of Sciences</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000241530628</orcidid><orcidid>https://orcid.org/0000000254552957</orcidid><orcidid>https://orcid.org/0000000169813956</orcidid><orcidid>https://orcid.org/0000000345195238</orcidid><orcidid>https://orcid.org/0000000170408894</orcidid><orcidid>https://orcid.org/0000000298437635</orcidid><orcidid>https://orcid.org/0000000180713083</orcidid></search><sort><creationdate>20210308</creationdate><title>Time-resolved turbulent dynamo in a laser plasma</title><author>Bott, Archie A. ; Tzeferacos, Petros ; Chen, Laura ; Palmer, Charlotte J. ; Rigby, Alexandra ; Bell, Anthony R. ; Bingham, Robert ; Birkel, Andrew ; Graziani, Carlo ; Froula, Dustin H. ; Katz, Joseph ; Koenig, Michel ; Kunz, Matthew W. ; Li, Chikang ; Meinecke, Jena ; Miniati, Francesco ; Petrasso, Richard ; Park, Hye-Sook ; Remington, Bruce A. ; Reville, Brian ; Ross, J. Steven ; Ryu, Dongsu ; Ryutov, Dmitri ; Séguin, Fredrick H. ; White, Thomas G. ; Schekochihin, Alexander A. ; Lamb, Donald Q. ; Gregori, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18125613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>fluctuation dynamo</topic><topic>laboratory astrophysics</topic><topic>magnetic fields</topic><topic>Physics - Plasma physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bott, Archie A.</creatorcontrib><creatorcontrib>Tzeferacos, Petros</creatorcontrib><creatorcontrib>Chen, Laura</creatorcontrib><creatorcontrib>Palmer, Charlotte J.</creatorcontrib><creatorcontrib>Rigby, Alexandra</creatorcontrib><creatorcontrib>Bell, Anthony R.</creatorcontrib><creatorcontrib>Bingham, Robert</creatorcontrib><creatorcontrib>Birkel, Andrew</creatorcontrib><creatorcontrib>Graziani, Carlo</creatorcontrib><creatorcontrib>Froula, Dustin H.</creatorcontrib><creatorcontrib>Katz, Joseph</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Kunz, Matthew W.</creatorcontrib><creatorcontrib>Li, Chikang</creatorcontrib><creatorcontrib>Meinecke, Jena</creatorcontrib><creatorcontrib>Miniati, Francesco</creatorcontrib><creatorcontrib>Petrasso, Richard</creatorcontrib><creatorcontrib>Park, Hye-Sook</creatorcontrib><creatorcontrib>Remington, Bruce A.</creatorcontrib><creatorcontrib>Reville, Brian</creatorcontrib><creatorcontrib>Ross, J. Steven</creatorcontrib><creatorcontrib>Ryu, Dongsu</creatorcontrib><creatorcontrib>Ryutov, Dmitri</creatorcontrib><creatorcontrib>Séguin, Fredrick H.</creatorcontrib><creatorcontrib>White, Thomas G.</creatorcontrib><creatorcontrib>Schekochihin, Alexander A.</creatorcontrib><creatorcontrib>Lamb, Donald Q.</creatorcontrib><creatorcontrib>Gregori, Gianluca</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bott, Archie A.</au><au>Tzeferacos, Petros</au><au>Chen, Laura</au><au>Palmer, Charlotte J.</au><au>Rigby, Alexandra</au><au>Bell, Anthony R.</au><au>Bingham, Robert</au><au>Birkel, Andrew</au><au>Graziani, Carlo</au><au>Froula, Dustin H.</au><au>Katz, Joseph</au><au>Koenig, Michel</au><au>Kunz, Matthew W.</au><au>Li, Chikang</au><au>Meinecke, Jena</au><au>Miniati, Francesco</au><au>Petrasso, Richard</au><au>Park, Hye-Sook</au><au>Remington, Bruce A.</au><au>Reville, Brian</au><au>Ross, J. Steven</au><au>Ryu, Dongsu</au><au>Ryutov, Dmitri</au><au>Séguin, Fredrick H.</au><au>White, Thomas G.</au><au>Schekochihin, Alexander A.</au><au>Lamb, Donald Q.</au><au>Gregori, Gianluca</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-resolved turbulent dynamo in a laser plasma</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2021-03-08</date><risdate>2021</risdate><volume>118</volume><issue>11</issue><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm < 1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm ≳ 1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm ≳ 1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Here, our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><orcidid>https://orcid.org/0000000241530628</orcidid><orcidid>https://orcid.org/0000000254552957</orcidid><orcidid>https://orcid.org/0000000169813956</orcidid><orcidid>https://orcid.org/0000000345195238</orcidid><orcidid>https://orcid.org/0000000170408894</orcidid><orcidid>https://orcid.org/0000000298437635</orcidid><orcidid>https://orcid.org/0000000180713083</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (11) |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_osti_scitechconnect_1812561 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY fluctuation dynamo laboratory astrophysics magnetic fields Physics - Plasma physics |
title | Time-resolved turbulent dynamo in a laser plasma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-resolved%20turbulent%20dynamo%20in%20a%20laser%20plasma&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bott,%20Archie%20A.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-03-08&rft.volume=118&rft.issue=11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/&rft_dat=%3Costi%3E1812561%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18125613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |