Loading…

Time-resolved turbulent dynamo in a laser plasma

Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by expe...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-03, Vol.118 (11)
Main Authors: Bott, Archie A., Tzeferacos, Petros, Chen, Laura, Palmer, Charlotte J., Rigby, Alexandra, Bell, Anthony R., Bingham, Robert, Birkel, Andrew, Graziani, Carlo, Froula, Dustin H., Katz, Joseph, Koenig, Michel, Kunz, Matthew W., Li, Chikang, Meinecke, Jena, Miniati, Francesco, Petrasso, Richard, Park, Hye-Sook, Remington, Bruce A., Reville, Brian, Ross, J. Steven, Ryu, Dongsu, Ryutov, Dmitri, Séguin, Fredrick H., White, Thomas G., Schekochihin, Alexander A., Lamb, Donald Q., Gregori, Gianluca
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 11
container_start_page
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Bott, Archie A.
Tzeferacos, Petros
Chen, Laura
Palmer, Charlotte J.
Rigby, Alexandra
Bell, Anthony R.
Bingham, Robert
Birkel, Andrew
Graziani, Carlo
Froula, Dustin H.
Katz, Joseph
Koenig, Michel
Kunz, Matthew W.
Li, Chikang
Meinecke, Jena
Miniati, Francesco
Petrasso, Richard
Park, Hye-Sook
Remington, Bruce A.
Reville, Brian
Ross, J. Steven
Ryu, Dongsu
Ryutov, Dmitri
Séguin, Fredrick H.
White, Thomas G.
Schekochihin, Alexander A.
Lamb, Donald Q.
Gregori, Gianluca
description Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm < 1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm ≳ 1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm ≳ 1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Here, our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1812561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812561</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18125613</originalsourceid><addsrcrecordid>eNqNyksKwjAQANAgCtbPHYL7wCS2NVmL4gG6LzEdMZImkkkFb68LD-Dqbd6MVRKMFG1tYM4qAHUQulb1kq2IHgBgGg0Vg86PKDJSCi8ceJnydQoYCx_e0Y6J-8gtD5Yw8-eX0W7Y4mYD4fbnmu3Op-54EYmK78n5gu7uUozoSi-1VE0r93-lD_BLNFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-resolved turbulent dynamo in a laser plasma</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Bott, Archie A. ; Tzeferacos, Petros ; Chen, Laura ; Palmer, Charlotte J. ; Rigby, Alexandra ; Bell, Anthony R. ; Bingham, Robert ; Birkel, Andrew ; Graziani, Carlo ; Froula, Dustin H. ; Katz, Joseph ; Koenig, Michel ; Kunz, Matthew W. ; Li, Chikang ; Meinecke, Jena ; Miniati, Francesco ; Petrasso, Richard ; Park, Hye-Sook ; Remington, Bruce A. ; Reville, Brian ; Ross, J. Steven ; Ryu, Dongsu ; Ryutov, Dmitri ; Séguin, Fredrick H. ; White, Thomas G. ; Schekochihin, Alexander A. ; Lamb, Donald Q. ; Gregori, Gianluca</creator><creatorcontrib>Bott, Archie A. ; Tzeferacos, Petros ; Chen, Laura ; Palmer, Charlotte J. ; Rigby, Alexandra ; Bell, Anthony R. ; Bingham, Robert ; Birkel, Andrew ; Graziani, Carlo ; Froula, Dustin H. ; Katz, Joseph ; Koenig, Michel ; Kunz, Matthew W. ; Li, Chikang ; Meinecke, Jena ; Miniati, Francesco ; Petrasso, Richard ; Park, Hye-Sook ; Remington, Bruce A. ; Reville, Brian ; Ross, J. Steven ; Ryu, Dongsu ; Ryutov, Dmitri ; Séguin, Fredrick H. ; White, Thomas G. ; Schekochihin, Alexander A. ; Lamb, Donald Q. ; Gregori, Gianluca ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Univ. of Rochester, NY (United States). Lab. for Laser Energetics ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm &lt; 1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm ≳ 1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm ≳ 1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Here, our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; fluctuation dynamo ; laboratory astrophysics ; magnetic fields ; Physics - Plasma physics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (11)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000241530628 ; 0000000254552957 ; 0000000169813956 ; 0000000345195238 ; 0000000170408894 ; 0000000298437635 ; 0000000180713083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1812561$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bott, Archie A.</creatorcontrib><creatorcontrib>Tzeferacos, Petros</creatorcontrib><creatorcontrib>Chen, Laura</creatorcontrib><creatorcontrib>Palmer, Charlotte J.</creatorcontrib><creatorcontrib>Rigby, Alexandra</creatorcontrib><creatorcontrib>Bell, Anthony R.</creatorcontrib><creatorcontrib>Bingham, Robert</creatorcontrib><creatorcontrib>Birkel, Andrew</creatorcontrib><creatorcontrib>Graziani, Carlo</creatorcontrib><creatorcontrib>Froula, Dustin H.</creatorcontrib><creatorcontrib>Katz, Joseph</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Kunz, Matthew W.</creatorcontrib><creatorcontrib>Li, Chikang</creatorcontrib><creatorcontrib>Meinecke, Jena</creatorcontrib><creatorcontrib>Miniati, Francesco</creatorcontrib><creatorcontrib>Petrasso, Richard</creatorcontrib><creatorcontrib>Park, Hye-Sook</creatorcontrib><creatorcontrib>Remington, Bruce A.</creatorcontrib><creatorcontrib>Reville, Brian</creatorcontrib><creatorcontrib>Ross, J. Steven</creatorcontrib><creatorcontrib>Ryu, Dongsu</creatorcontrib><creatorcontrib>Ryutov, Dmitri</creatorcontrib><creatorcontrib>Séguin, Fredrick H.</creatorcontrib><creatorcontrib>White, Thomas G.</creatorcontrib><creatorcontrib>Schekochihin, Alexander A.</creatorcontrib><creatorcontrib>Lamb, Donald Q.</creatorcontrib><creatorcontrib>Gregori, Gianluca</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Time-resolved turbulent dynamo in a laser plasma</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm &lt; 1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm ≳ 1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm ≳ 1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Here, our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>fluctuation dynamo</subject><subject>laboratory astrophysics</subject><subject>magnetic fields</subject><subject>Physics - Plasma physics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNyksKwjAQANAgCtbPHYL7wCS2NVmL4gG6LzEdMZImkkkFb68LD-Dqbd6MVRKMFG1tYM4qAHUQulb1kq2IHgBgGg0Vg86PKDJSCi8ceJnydQoYCx_e0Y6J-8gtD5Yw8-eX0W7Y4mYD4fbnmu3Op-54EYmK78n5gu7uUozoSi-1VE0r93-lD_BLNFI</recordid><startdate>20210308</startdate><enddate>20210308</enddate><creator>Bott, Archie A.</creator><creator>Tzeferacos, Petros</creator><creator>Chen, Laura</creator><creator>Palmer, Charlotte J.</creator><creator>Rigby, Alexandra</creator><creator>Bell, Anthony R.</creator><creator>Bingham, Robert</creator><creator>Birkel, Andrew</creator><creator>Graziani, Carlo</creator><creator>Froula, Dustin H.</creator><creator>Katz, Joseph</creator><creator>Koenig, Michel</creator><creator>Kunz, Matthew W.</creator><creator>Li, Chikang</creator><creator>Meinecke, Jena</creator><creator>Miniati, Francesco</creator><creator>Petrasso, Richard</creator><creator>Park, Hye-Sook</creator><creator>Remington, Bruce A.</creator><creator>Reville, Brian</creator><creator>Ross, J. Steven</creator><creator>Ryu, Dongsu</creator><creator>Ryutov, Dmitri</creator><creator>Séguin, Fredrick H.</creator><creator>White, Thomas G.</creator><creator>Schekochihin, Alexander A.</creator><creator>Lamb, Donald Q.</creator><creator>Gregori, Gianluca</creator><general>National Academy of Sciences</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000241530628</orcidid><orcidid>https://orcid.org/0000000254552957</orcidid><orcidid>https://orcid.org/0000000169813956</orcidid><orcidid>https://orcid.org/0000000345195238</orcidid><orcidid>https://orcid.org/0000000170408894</orcidid><orcidid>https://orcid.org/0000000298437635</orcidid><orcidid>https://orcid.org/0000000180713083</orcidid></search><sort><creationdate>20210308</creationdate><title>Time-resolved turbulent dynamo in a laser plasma</title><author>Bott, Archie A. ; Tzeferacos, Petros ; Chen, Laura ; Palmer, Charlotte J. ; Rigby, Alexandra ; Bell, Anthony R. ; Bingham, Robert ; Birkel, Andrew ; Graziani, Carlo ; Froula, Dustin H. ; Katz, Joseph ; Koenig, Michel ; Kunz, Matthew W. ; Li, Chikang ; Meinecke, Jena ; Miniati, Francesco ; Petrasso, Richard ; Park, Hye-Sook ; Remington, Bruce A. ; Reville, Brian ; Ross, J. Steven ; Ryu, Dongsu ; Ryutov, Dmitri ; Séguin, Fredrick H. ; White, Thomas G. ; Schekochihin, Alexander A. ; Lamb, Donald Q. ; Gregori, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18125613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>fluctuation dynamo</topic><topic>laboratory astrophysics</topic><topic>magnetic fields</topic><topic>Physics - Plasma physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bott, Archie A.</creatorcontrib><creatorcontrib>Tzeferacos, Petros</creatorcontrib><creatorcontrib>Chen, Laura</creatorcontrib><creatorcontrib>Palmer, Charlotte J.</creatorcontrib><creatorcontrib>Rigby, Alexandra</creatorcontrib><creatorcontrib>Bell, Anthony R.</creatorcontrib><creatorcontrib>Bingham, Robert</creatorcontrib><creatorcontrib>Birkel, Andrew</creatorcontrib><creatorcontrib>Graziani, Carlo</creatorcontrib><creatorcontrib>Froula, Dustin H.</creatorcontrib><creatorcontrib>Katz, Joseph</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Kunz, Matthew W.</creatorcontrib><creatorcontrib>Li, Chikang</creatorcontrib><creatorcontrib>Meinecke, Jena</creatorcontrib><creatorcontrib>Miniati, Francesco</creatorcontrib><creatorcontrib>Petrasso, Richard</creatorcontrib><creatorcontrib>Park, Hye-Sook</creatorcontrib><creatorcontrib>Remington, Bruce A.</creatorcontrib><creatorcontrib>Reville, Brian</creatorcontrib><creatorcontrib>Ross, J. Steven</creatorcontrib><creatorcontrib>Ryu, Dongsu</creatorcontrib><creatorcontrib>Ryutov, Dmitri</creatorcontrib><creatorcontrib>Séguin, Fredrick H.</creatorcontrib><creatorcontrib>White, Thomas G.</creatorcontrib><creatorcontrib>Schekochihin, Alexander A.</creatorcontrib><creatorcontrib>Lamb, Donald Q.</creatorcontrib><creatorcontrib>Gregori, Gianluca</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bott, Archie A.</au><au>Tzeferacos, Petros</au><au>Chen, Laura</au><au>Palmer, Charlotte J.</au><au>Rigby, Alexandra</au><au>Bell, Anthony R.</au><au>Bingham, Robert</au><au>Birkel, Andrew</au><au>Graziani, Carlo</au><au>Froula, Dustin H.</au><au>Katz, Joseph</au><au>Koenig, Michel</au><au>Kunz, Matthew W.</au><au>Li, Chikang</au><au>Meinecke, Jena</au><au>Miniati, Francesco</au><au>Petrasso, Richard</au><au>Park, Hye-Sook</au><au>Remington, Bruce A.</au><au>Reville, Brian</au><au>Ross, J. Steven</au><au>Ryu, Dongsu</au><au>Ryutov, Dmitri</au><au>Séguin, Fredrick H.</au><au>White, Thomas G.</au><au>Schekochihin, Alexander A.</au><au>Lamb, Donald Q.</au><au>Gregori, Gianluca</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-resolved turbulent dynamo in a laser plasma</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2021-03-08</date><risdate>2021</risdate><volume>118</volume><issue>11</issue><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm &lt; 1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm ≳ 1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm ≳ 1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Here, our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><orcidid>https://orcid.org/0000000241530628</orcidid><orcidid>https://orcid.org/0000000254552957</orcidid><orcidid>https://orcid.org/0000000169813956</orcidid><orcidid>https://orcid.org/0000000345195238</orcidid><orcidid>https://orcid.org/0000000170408894</orcidid><orcidid>https://orcid.org/0000000298437635</orcidid><orcidid>https://orcid.org/0000000180713083</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (11)
issn 0027-8424
1091-6490
language eng
recordid cdi_osti_scitechconnect_1812561
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
fluctuation dynamo
laboratory astrophysics
magnetic fields
Physics - Plasma physics
title Time-resolved turbulent dynamo in a laser plasma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-resolved%20turbulent%20dynamo%20in%20a%20laser%20plasma&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bott,%20Archie%20A.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-03-08&rft.volume=118&rft.issue=11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/&rft_dat=%3Costi%3E1812561%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18125613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true