Loading…
Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II
Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light,...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2021-09, Vol.23 (35), p.19511-19524 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3 |
container_end_page | 19524 |
container_issue | 35 |
container_start_page | 19511 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 23 |
creator | Hancock, Ashley M Son, Minjung Nairat, Muath Wei, Tiejun Jeuken, Lars J. C Duffy, Christopher D. P Schlau-Cohen, Gabriela S Adams, Peter G |
description | Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems.
We characterize the photophysical interactions between lipid-linked chromophores and plant light-harvesting proteins incorporated into nanodiscs using optical spectroscopy, simulations and theoretical modelling. |
doi_str_mv | 10.1039/d1cp01628h |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1815202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572797541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhSNERUthwx4pgg1CSvFzYm8qoeHRkSrBgq4t5-Z64pLYwc4U-u9rOtUgurq-8qdjn3Oq6hUlZ5Rw_aGnMBO6Ymp4Up1QseKNJko8PZzb1XH1POdrQgiVlD-rjrmQTLBWnVT2alySdTYvNQZM29u6rCE7THWHy2_EUI9-9n0z-vAT-xqGFKc4DzFhrm3o63m0YSnMdliawaYbzIsP2xriNI_4p95sXlRHzo4ZXz7M0-rqy-cf64vm8tvXzfrjZQOS66WhqDWxLTJHiEXilHDOguwVl05aSRShnQUhhOo66KFTFnTLOs0cCGsR-Gl1vtedd92EPWAoTkYzJz_ZdGui9eb_m-AHs403RgnBFF8VgTd7gVgsmAx-QRgghoCwGKqoZIQV6N3DKyn-2hWzZvIZcCwpYNxlw2TLNBdM6IK-fYRex10KJYN7qtWtFLRQ7_cUpJhzQnf4MSXmb73mE11_v6_3osCv93DKcOD-1c_vAHFYosE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572797541</pqid></control><display><type>article</type><title>Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Hancock, Ashley M ; Son, Minjung ; Nairat, Muath ; Wei, Tiejun ; Jeuken, Lars J. C ; Duffy, Christopher D. P ; Schlau-Cohen, Gabriela S ; Adams, Peter G</creator><creatorcontrib>Hancock, Ashley M ; Son, Minjung ; Nairat, Muath ; Wei, Tiejun ; Jeuken, Lars J. C ; Duffy, Christopher D. P ; Schlau-Cohen, Gabriela S ; Adams, Peter G ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems.
We characterize the photophysical interactions between lipid-linked chromophores and plant light-harvesting proteins incorporated into nanodiscs using optical spectroscopy, simulations and theoretical modelling.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp01628h</identifier><identifier>PMID: 34524278</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; Chemistry ; Chloroplasts ; Chromophores ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Energy transfer ; Fluorescence ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Irradiance ; Lipids ; Membranes ; Photosynthesis ; Proteins ; Solar energy ; Spectrum analysis</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-09, Vol.23 (35), p.19511-19524</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © the Owner Societies 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3</citedby><cites>FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3</cites><orcidid>0000-0002-3940-8770 ; 0000-0003-2069-5105 ; 0000-0001-7810-3964 ; 0000-0001-7746-2981 ; 0000-0003-4309-6850 ; 0000-0002-8385-062X ; 0000-0001-6462-8495 ; 0000-0002-6384-584X ; 000000026384584X ; 0000000177462981 ; 0000000343096850 ; 0000000239408770 ; 0000000178103964 ; 000000028385062X ; 0000000164628495 ; 0000000320695105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1815202$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hancock, Ashley M</creatorcontrib><creatorcontrib>Son, Minjung</creatorcontrib><creatorcontrib>Nairat, Muath</creatorcontrib><creatorcontrib>Wei, Tiejun</creatorcontrib><creatorcontrib>Jeuken, Lars J. C</creatorcontrib><creatorcontrib>Duffy, Christopher D. P</creatorcontrib><creatorcontrib>Schlau-Cohen, Gabriela S</creatorcontrib><creatorcontrib>Adams, Peter G</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II</title><title>Physical chemistry chemical physics : PCCP</title><description>Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems.
We characterize the photophysical interactions between lipid-linked chromophores and plant light-harvesting proteins incorporated into nanodiscs using optical spectroscopy, simulations and theoretical modelling.</description><subject>Absorption</subject><subject>Chemistry</subject><subject>Chloroplasts</subject><subject>Chromophores</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Irradiance</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Photosynthesis</subject><subject>Proteins</subject><subject>Solar energy</subject><subject>Spectrum analysis</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkUtv1DAUhSNERUthwx4pgg1CSvFzYm8qoeHRkSrBgq4t5-Z64pLYwc4U-u9rOtUgurq-8qdjn3Oq6hUlZ5Rw_aGnMBO6Ymp4Up1QseKNJko8PZzb1XH1POdrQgiVlD-rjrmQTLBWnVT2alySdTYvNQZM29u6rCE7THWHy2_EUI9-9n0z-vAT-xqGFKc4DzFhrm3o63m0YSnMdliawaYbzIsP2xriNI_4p95sXlRHzo4ZXz7M0-rqy-cf64vm8tvXzfrjZQOS66WhqDWxLTJHiEXilHDOguwVl05aSRShnQUhhOo66KFTFnTLOs0cCGsR-Gl1vtedd92EPWAoTkYzJz_ZdGui9eb_m-AHs403RgnBFF8VgTd7gVgsmAx-QRgghoCwGKqoZIQV6N3DKyn-2hWzZvIZcCwpYNxlw2TLNBdM6IK-fYRex10KJYN7qtWtFLRQ7_cUpJhzQnf4MSXmb73mE11_v6_3osCv93DKcOD-1c_vAHFYosE</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Hancock, Ashley M</creator><creator>Son, Minjung</creator><creator>Nairat, Muath</creator><creator>Wei, Tiejun</creator><creator>Jeuken, Lars J. C</creator><creator>Duffy, Christopher D. P</creator><creator>Schlau-Cohen, Gabriela S</creator><creator>Adams, Peter G</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3940-8770</orcidid><orcidid>https://orcid.org/0000-0003-2069-5105</orcidid><orcidid>https://orcid.org/0000-0001-7810-3964</orcidid><orcidid>https://orcid.org/0000-0001-7746-2981</orcidid><orcidid>https://orcid.org/0000-0003-4309-6850</orcidid><orcidid>https://orcid.org/0000-0002-8385-062X</orcidid><orcidid>https://orcid.org/0000-0001-6462-8495</orcidid><orcidid>https://orcid.org/0000-0002-6384-584X</orcidid><orcidid>https://orcid.org/000000026384584X</orcidid><orcidid>https://orcid.org/0000000177462981</orcidid><orcidid>https://orcid.org/0000000343096850</orcidid><orcidid>https://orcid.org/0000000239408770</orcidid><orcidid>https://orcid.org/0000000178103964</orcidid><orcidid>https://orcid.org/000000028385062X</orcidid><orcidid>https://orcid.org/0000000164628495</orcidid><orcidid>https://orcid.org/0000000320695105</orcidid></search><sort><creationdate>20210915</creationdate><title>Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II</title><author>Hancock, Ashley M ; Son, Minjung ; Nairat, Muath ; Wei, Tiejun ; Jeuken, Lars J. C ; Duffy, Christopher D. P ; Schlau-Cohen, Gabriela S ; Adams, Peter G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Chemistry</topic><topic>Chloroplasts</topic><topic>Chromophores</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Irradiance</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Photosynthesis</topic><topic>Proteins</topic><topic>Solar energy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hancock, Ashley M</creatorcontrib><creatorcontrib>Son, Minjung</creatorcontrib><creatorcontrib>Nairat, Muath</creatorcontrib><creatorcontrib>Wei, Tiejun</creatorcontrib><creatorcontrib>Jeuken, Lars J. C</creatorcontrib><creatorcontrib>Duffy, Christopher D. P</creatorcontrib><creatorcontrib>Schlau-Cohen, Gabriela S</creatorcontrib><creatorcontrib>Adams, Peter G</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hancock, Ashley M</au><au>Son, Minjung</au><au>Nairat, Muath</au><au>Wei, Tiejun</au><au>Jeuken, Lars J. C</au><au>Duffy, Christopher D. P</au><au>Schlau-Cohen, Gabriela S</au><au>Adams, Peter G</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>23</volume><issue>35</issue><spage>19511</spage><epage>19524</epage><pages>19511-19524</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems.
We characterize the photophysical interactions between lipid-linked chromophores and plant light-harvesting proteins incorporated into nanodiscs using optical spectroscopy, simulations and theoretical modelling.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34524278</pmid><doi>10.1039/d1cp01628h</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3940-8770</orcidid><orcidid>https://orcid.org/0000-0003-2069-5105</orcidid><orcidid>https://orcid.org/0000-0001-7810-3964</orcidid><orcidid>https://orcid.org/0000-0001-7746-2981</orcidid><orcidid>https://orcid.org/0000-0003-4309-6850</orcidid><orcidid>https://orcid.org/0000-0002-8385-062X</orcidid><orcidid>https://orcid.org/0000-0001-6462-8495</orcidid><orcidid>https://orcid.org/0000-0002-6384-584X</orcidid><orcidid>https://orcid.org/000000026384584X</orcidid><orcidid>https://orcid.org/0000000177462981</orcidid><orcidid>https://orcid.org/0000000343096850</orcidid><orcidid>https://orcid.org/0000000239408770</orcidid><orcidid>https://orcid.org/0000000178103964</orcidid><orcidid>https://orcid.org/000000028385062X</orcidid><orcidid>https://orcid.org/0000000164628495</orcidid><orcidid>https://orcid.org/0000000320695105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2021-09, Vol.23 (35), p.19511-19524 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_osti_scitechconnect_1815202 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Absorption Chemistry Chloroplasts Chromophores CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Energy transfer Fluorescence INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Irradiance Lipids Membranes Photosynthesis Proteins Solar energy Spectrum analysis |
title | Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20energy%20transfer%20between%20lipid-linked%20chromophores%20and%20plant%20light-harvesting%20complex%20II&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Hancock,%20Ashley%20M&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2021-09-15&rft.volume=23&rft.issue=35&rft.spage=19511&rft.epage=19524&rft.pages=19511-19524&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp01628h&rft_dat=%3Cproquest_osti_%3E2572797541%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572797541&rft_id=info:pmid/34524278&rfr_iscdi=true |