Loading…

Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II

Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light,...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2021-09, Vol.23 (35), p.19511-19524
Main Authors: Hancock, Ashley M, Son, Minjung, Nairat, Muath, Wei, Tiejun, Jeuken, Lars J. C, Duffy, Christopher D. P, Schlau-Cohen, Gabriela S, Adams, Peter G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3
cites cdi_FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3
container_end_page 19524
container_issue 35
container_start_page 19511
container_title Physical chemistry chemical physics : PCCP
container_volume 23
creator Hancock, Ashley M
Son, Minjung
Nairat, Muath
Wei, Tiejun
Jeuken, Lars J. C
Duffy, Christopher D. P
Schlau-Cohen, Gabriela S
Adams, Peter G
description Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems. We characterize the photophysical interactions between lipid-linked chromophores and plant light-harvesting proteins incorporated into nanodiscs using optical spectroscopy, simulations and theoretical modelling.
doi_str_mv 10.1039/d1cp01628h
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1815202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572797541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhSNERUthwx4pgg1CSvFzYm8qoeHRkSrBgq4t5-Z64pLYwc4U-u9rOtUgurq-8qdjn3Oq6hUlZ5Rw_aGnMBO6Ymp4Up1QseKNJko8PZzb1XH1POdrQgiVlD-rjrmQTLBWnVT2alySdTYvNQZM29u6rCE7THWHy2_EUI9-9n0z-vAT-xqGFKc4DzFhrm3o63m0YSnMdliawaYbzIsP2xriNI_4p95sXlRHzo4ZXz7M0-rqy-cf64vm8tvXzfrjZQOS66WhqDWxLTJHiEXilHDOguwVl05aSRShnQUhhOo66KFTFnTLOs0cCGsR-Gl1vtedd92EPWAoTkYzJz_ZdGui9eb_m-AHs403RgnBFF8VgTd7gVgsmAx-QRgghoCwGKqoZIQV6N3DKyn-2hWzZvIZcCwpYNxlw2TLNBdM6IK-fYRex10KJYN7qtWtFLRQ7_cUpJhzQnf4MSXmb73mE11_v6_3osCv93DKcOD-1c_vAHFYosE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572797541</pqid></control><display><type>article</type><title>Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Hancock, Ashley M ; Son, Minjung ; Nairat, Muath ; Wei, Tiejun ; Jeuken, Lars J. C ; Duffy, Christopher D. P ; Schlau-Cohen, Gabriela S ; Adams, Peter G</creator><creatorcontrib>Hancock, Ashley M ; Son, Minjung ; Nairat, Muath ; Wei, Tiejun ; Jeuken, Lars J. C ; Duffy, Christopher D. P ; Schlau-Cohen, Gabriela S ; Adams, Peter G ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems. We characterize the photophysical interactions between lipid-linked chromophores and plant light-harvesting proteins incorporated into nanodiscs using optical spectroscopy, simulations and theoretical modelling.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp01628h</identifier><identifier>PMID: 34524278</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; Chemistry ; Chloroplasts ; Chromophores ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Energy transfer ; Fluorescence ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Irradiance ; Lipids ; Membranes ; Photosynthesis ; Proteins ; Solar energy ; Spectrum analysis</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-09, Vol.23 (35), p.19511-19524</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © the Owner Societies 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3</citedby><cites>FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3</cites><orcidid>0000-0002-3940-8770 ; 0000-0003-2069-5105 ; 0000-0001-7810-3964 ; 0000-0001-7746-2981 ; 0000-0003-4309-6850 ; 0000-0002-8385-062X ; 0000-0001-6462-8495 ; 0000-0002-6384-584X ; 000000026384584X ; 0000000177462981 ; 0000000343096850 ; 0000000239408770 ; 0000000178103964 ; 000000028385062X ; 0000000164628495 ; 0000000320695105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1815202$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hancock, Ashley M</creatorcontrib><creatorcontrib>Son, Minjung</creatorcontrib><creatorcontrib>Nairat, Muath</creatorcontrib><creatorcontrib>Wei, Tiejun</creatorcontrib><creatorcontrib>Jeuken, Lars J. C</creatorcontrib><creatorcontrib>Duffy, Christopher D. P</creatorcontrib><creatorcontrib>Schlau-Cohen, Gabriela S</creatorcontrib><creatorcontrib>Adams, Peter G</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II</title><title>Physical chemistry chemical physics : PCCP</title><description>Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems. We characterize the photophysical interactions between lipid-linked chromophores and plant light-harvesting proteins incorporated into nanodiscs using optical spectroscopy, simulations and theoretical modelling.</description><subject>Absorption</subject><subject>Chemistry</subject><subject>Chloroplasts</subject><subject>Chromophores</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Irradiance</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Photosynthesis</subject><subject>Proteins</subject><subject>Solar energy</subject><subject>Spectrum analysis</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkUtv1DAUhSNERUthwx4pgg1CSvFzYm8qoeHRkSrBgq4t5-Z64pLYwc4U-u9rOtUgurq-8qdjn3Oq6hUlZ5Rw_aGnMBO6Ymp4Up1QseKNJko8PZzb1XH1POdrQgiVlD-rjrmQTLBWnVT2alySdTYvNQZM29u6rCE7THWHy2_EUI9-9n0z-vAT-xqGFKc4DzFhrm3o63m0YSnMdliawaYbzIsP2xriNI_4p95sXlRHzo4ZXz7M0-rqy-cf64vm8tvXzfrjZQOS66WhqDWxLTJHiEXilHDOguwVl05aSRShnQUhhOo66KFTFnTLOs0cCGsR-Gl1vtedd92EPWAoTkYzJz_ZdGui9eb_m-AHs403RgnBFF8VgTd7gVgsmAx-QRgghoCwGKqoZIQV6N3DKyn-2hWzZvIZcCwpYNxlw2TLNBdM6IK-fYRex10KJYN7qtWtFLRQ7_cUpJhzQnf4MSXmb73mE11_v6_3osCv93DKcOD-1c_vAHFYosE</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Hancock, Ashley M</creator><creator>Son, Minjung</creator><creator>Nairat, Muath</creator><creator>Wei, Tiejun</creator><creator>Jeuken, Lars J. C</creator><creator>Duffy, Christopher D. P</creator><creator>Schlau-Cohen, Gabriela S</creator><creator>Adams, Peter G</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3940-8770</orcidid><orcidid>https://orcid.org/0000-0003-2069-5105</orcidid><orcidid>https://orcid.org/0000-0001-7810-3964</orcidid><orcidid>https://orcid.org/0000-0001-7746-2981</orcidid><orcidid>https://orcid.org/0000-0003-4309-6850</orcidid><orcidid>https://orcid.org/0000-0002-8385-062X</orcidid><orcidid>https://orcid.org/0000-0001-6462-8495</orcidid><orcidid>https://orcid.org/0000-0002-6384-584X</orcidid><orcidid>https://orcid.org/000000026384584X</orcidid><orcidid>https://orcid.org/0000000177462981</orcidid><orcidid>https://orcid.org/0000000343096850</orcidid><orcidid>https://orcid.org/0000000239408770</orcidid><orcidid>https://orcid.org/0000000178103964</orcidid><orcidid>https://orcid.org/000000028385062X</orcidid><orcidid>https://orcid.org/0000000164628495</orcidid><orcidid>https://orcid.org/0000000320695105</orcidid></search><sort><creationdate>20210915</creationdate><title>Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II</title><author>Hancock, Ashley M ; Son, Minjung ; Nairat, Muath ; Wei, Tiejun ; Jeuken, Lars J. C ; Duffy, Christopher D. P ; Schlau-Cohen, Gabriela S ; Adams, Peter G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Chemistry</topic><topic>Chloroplasts</topic><topic>Chromophores</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Irradiance</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Photosynthesis</topic><topic>Proteins</topic><topic>Solar energy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hancock, Ashley M</creatorcontrib><creatorcontrib>Son, Minjung</creatorcontrib><creatorcontrib>Nairat, Muath</creatorcontrib><creatorcontrib>Wei, Tiejun</creatorcontrib><creatorcontrib>Jeuken, Lars J. C</creatorcontrib><creatorcontrib>Duffy, Christopher D. P</creatorcontrib><creatorcontrib>Schlau-Cohen, Gabriela S</creatorcontrib><creatorcontrib>Adams, Peter G</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hancock, Ashley M</au><au>Son, Minjung</au><au>Nairat, Muath</au><au>Wei, Tiejun</au><au>Jeuken, Lars J. C</au><au>Duffy, Christopher D. P</au><au>Schlau-Cohen, Gabriela S</au><au>Adams, Peter G</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>23</volume><issue>35</issue><spage>19511</spage><epage>19524</epage><pages>19511-19524</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems. We characterize the photophysical interactions between lipid-linked chromophores and plant light-harvesting proteins incorporated into nanodiscs using optical spectroscopy, simulations and theoretical modelling.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34524278</pmid><doi>10.1039/d1cp01628h</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3940-8770</orcidid><orcidid>https://orcid.org/0000-0003-2069-5105</orcidid><orcidid>https://orcid.org/0000-0001-7810-3964</orcidid><orcidid>https://orcid.org/0000-0001-7746-2981</orcidid><orcidid>https://orcid.org/0000-0003-4309-6850</orcidid><orcidid>https://orcid.org/0000-0002-8385-062X</orcidid><orcidid>https://orcid.org/0000-0001-6462-8495</orcidid><orcidid>https://orcid.org/0000-0002-6384-584X</orcidid><orcidid>https://orcid.org/000000026384584X</orcidid><orcidid>https://orcid.org/0000000177462981</orcidid><orcidid>https://orcid.org/0000000343096850</orcidid><orcidid>https://orcid.org/0000000239408770</orcidid><orcidid>https://orcid.org/0000000178103964</orcidid><orcidid>https://orcid.org/000000028385062X</orcidid><orcidid>https://orcid.org/0000000164628495</orcidid><orcidid>https://orcid.org/0000000320695105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2021-09, Vol.23 (35), p.19511-19524
issn 1463-9076
1463-9084
language eng
recordid cdi_osti_scitechconnect_1815202
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Absorption
Chemistry
Chloroplasts
Chromophores
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Energy transfer
Fluorescence
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Irradiance
Lipids
Membranes
Photosynthesis
Proteins
Solar energy
Spectrum analysis
title Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20energy%20transfer%20between%20lipid-linked%20chromophores%20and%20plant%20light-harvesting%20complex%20II&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Hancock,%20Ashley%20M&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2021-09-15&rft.volume=23&rft.issue=35&rft.spage=19511&rft.epage=19524&rft.pages=19511-19524&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp01628h&rft_dat=%3Cproquest_osti_%3E2572797541%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-1e990a7e2f00ae0f84ffac5d835f5a50801bac4448bbcdcb8ac972b92fc4aaec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572797541&rft_id=info:pmid/34524278&rfr_iscdi=true