Loading…
Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection
Future cosmic microwave background (CMB) experiments, including the large scale ground-based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensit...
Saved in:
Published in: | Journal of low temperature physics 2020-04, Vol.199 (1-2), p.362-368 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933 |
container_end_page | 368 |
container_issue | 1-2 |
container_start_page | 362 |
container_title | Journal of low temperature physics |
container_volume | 199 |
creator | Tang, Q. Y. Barry, P. S. Cecil, T. W. Shirokoff, E. |
description | Future cosmic microwave background (CMB) experiments, including the large scale ground-based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensitivity, more than 100,000 detectors will be needed. Arrays of kinetic inductance detectors (KIDs) are a promising alternative for experiments that require large number of detectors due to the intrinsic multiplexing capabilities. We present the fabrication procedure for a prototype planar orthomode transducer (OMT)-coupled multi-color KID array optimized for 220/270 GHz frequency bands. These devices are made from silicon-on-insulator wafers to provide a low-loss substrate for the KIDs. The OMT couples the two polarizations of light from a wide-band feedhorn to separate Nb/SiN/Nb microstrip lines, which are then coupled to Al/Nb lumped-element KIDs (LEKIDs). The silicon on the backside of the OMT is etched away using deep reactive ion etch to release the OMT membrane to enable operation over a wide bandwidth. Finally, the buried oxide is removed underneath the KID capacitors in order to minimize two-level system noise and loss mitigation. We achieved a good yield (> 80%) on our prototype devices. |
doi_str_mv | 10.1007/s10909-020-02341-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1817183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388318597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gimANnO47tEQKlFa26lNlyHAdSlbjYzsC_xyWV2BhOJ52-9-7pIXSN4Q4D8PuAQYLMgUAaWuCcnaAJZpzmnDJ-iiYAhOSESHyOLkLYAoAUJZ2g-UzXvjM6dq7PXJutV5u8csN-Z5vstett7Ey26JvBRN0bmz3ZaE10PmvTVKvH4yGJL9FZq3fBXh33FL3NnjfVPF-uXxbVwzI3tChjrmtjjcW1rAuBW0M0Fpq1HKglUBDCJWkxBVYwAdByQRqtjWxKXoqaNVxSOkU3o68LsVPBdOn_h3F9n2IoLDDH4gDdjtDeu6_Bhqi2bvB9yqUIFYJiwSRPFBkp410I3rZq77tP7b8VBnWoVY21qlSr-q1VsSSioygkuH-3_s_6H9UPZFF4KA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388318597</pqid></control><display><type>article</type><title>Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection</title><source>Springer Link</source><creator>Tang, Q. Y. ; Barry, P. S. ; Cecil, T. W. ; Shirokoff, E.</creator><creatorcontrib>Tang, Q. Y. ; Barry, P. S. ; Cecil, T. W. ; Shirokoff, E. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Future cosmic microwave background (CMB) experiments, including the large scale ground-based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensitivity, more than 100,000 detectors will be needed. Arrays of kinetic inductance detectors (KIDs) are a promising alternative for experiments that require large number of detectors due to the intrinsic multiplexing capabilities. We present the fabrication procedure for a prototype planar orthomode transducer (OMT)-coupled multi-color KID array optimized for 220/270 GHz frequency bands. These devices are made from silicon-on-insulator wafers to provide a low-loss substrate for the KIDs. The OMT couples the two polarizations of light from a wide-band feedhorn to separate Nb/SiN/Nb microstrip lines, which are then coupled to Al/Nb lumped-element KIDs (LEKIDs). The silicon on the backside of the OMT is etched away using deep reactive ion etch to release the OMT membrane to enable operation over a wide bandwidth. Finally, the buried oxide is removed underneath the KID capacitors in order to minimize two-level system noise and loss mitigation. We achieved a good yield (> 80%) on our prototype devices.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-020-02341-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Arrays ; Big Bang theory ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Cosmic microwave background ; Cosmology ; Detectors ; fabrication ; Frequencies ; Inductance ; kinetic inductance detector ; Low temperature physics ; Magnetic Materials ; Magnetism ; Microstrip transmission lines ; Multiplexing ; Niobium ; Noise sensitivity ; OTHER INSTRUMENTATION ; Physics ; Physics and Astronomy ; Prototypes ; Sensors ; Silicon ; Substrates</subject><ispartof>Journal of low temperature physics, 2020-04, Vol.199 (1-2), p.362-368</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933</citedby><cites>FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933</cites><orcidid>0000-0002-6437-5974 ; 0000000264375974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1817183$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Q. Y.</creatorcontrib><creatorcontrib>Barry, P. S.</creatorcontrib><creatorcontrib>Cecil, T. W.</creatorcontrib><creatorcontrib>Shirokoff, E.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>Future cosmic microwave background (CMB) experiments, including the large scale ground-based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensitivity, more than 100,000 detectors will be needed. Arrays of kinetic inductance detectors (KIDs) are a promising alternative for experiments that require large number of detectors due to the intrinsic multiplexing capabilities. We present the fabrication procedure for a prototype planar orthomode transducer (OMT)-coupled multi-color KID array optimized for 220/270 GHz frequency bands. These devices are made from silicon-on-insulator wafers to provide a low-loss substrate for the KIDs. The OMT couples the two polarizations of light from a wide-band feedhorn to separate Nb/SiN/Nb microstrip lines, which are then coupled to Al/Nb lumped-element KIDs (LEKIDs). The silicon on the backside of the OMT is etched away using deep reactive ion etch to release the OMT membrane to enable operation over a wide bandwidth. Finally, the buried oxide is removed underneath the KID capacitors in order to minimize two-level system noise and loss mitigation. We achieved a good yield (> 80%) on our prototype devices.</description><subject>Aluminum</subject><subject>Arrays</subject><subject>Big Bang theory</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Cosmic microwave background</subject><subject>Cosmology</subject><subject>Detectors</subject><subject>fabrication</subject><subject>Frequencies</subject><subject>Inductance</subject><subject>kinetic inductance detector</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Microstrip transmission lines</subject><subject>Multiplexing</subject><subject>Niobium</subject><subject>Noise sensitivity</subject><subject>OTHER INSTRUMENTATION</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Prototypes</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Substrates</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5gimANnO47tEQKlFa26lNlyHAdSlbjYzsC_xyWV2BhOJ52-9-7pIXSN4Q4D8PuAQYLMgUAaWuCcnaAJZpzmnDJ-iiYAhOSESHyOLkLYAoAUJZ2g-UzXvjM6dq7PXJutV5u8csN-Z5vstett7Ey26JvBRN0bmz3ZaE10PmvTVKvH4yGJL9FZq3fBXh33FL3NnjfVPF-uXxbVwzI3tChjrmtjjcW1rAuBW0M0Fpq1HKglUBDCJWkxBVYwAdByQRqtjWxKXoqaNVxSOkU3o68LsVPBdOn_h3F9n2IoLDDH4gDdjtDeu6_Bhqi2bvB9yqUIFYJiwSRPFBkp410I3rZq77tP7b8VBnWoVY21qlSr-q1VsSSioygkuH-3_s_6H9UPZFF4KA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Tang, Q. Y.</creator><creator>Barry, P. S.</creator><creator>Cecil, T. W.</creator><creator>Shirokoff, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6437-5974</orcidid><orcidid>https://orcid.org/0000000264375974</orcidid></search><sort><creationdate>20200401</creationdate><title>Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection</title><author>Tang, Q. Y. ; Barry, P. S. ; Cecil, T. W. ; Shirokoff, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Arrays</topic><topic>Big Bang theory</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Cosmic microwave background</topic><topic>Cosmology</topic><topic>Detectors</topic><topic>fabrication</topic><topic>Frequencies</topic><topic>Inductance</topic><topic>kinetic inductance detector</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Microstrip transmission lines</topic><topic>Multiplexing</topic><topic>Niobium</topic><topic>Noise sensitivity</topic><topic>OTHER INSTRUMENTATION</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Prototypes</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Q. Y.</creatorcontrib><creatorcontrib>Barry, P. S.</creatorcontrib><creatorcontrib>Cecil, T. W.</creatorcontrib><creatorcontrib>Shirokoff, E.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Q. Y.</au><au>Barry, P. S.</au><au>Cecil, T. W.</au><au>Shirokoff, E.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>199</volume><issue>1-2</issue><spage>362</spage><epage>368</epage><pages>362-368</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>Future cosmic microwave background (CMB) experiments, including the large scale ground-based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensitivity, more than 100,000 detectors will be needed. Arrays of kinetic inductance detectors (KIDs) are a promising alternative for experiments that require large number of detectors due to the intrinsic multiplexing capabilities. We present the fabrication procedure for a prototype planar orthomode transducer (OMT)-coupled multi-color KID array optimized for 220/270 GHz frequency bands. These devices are made from silicon-on-insulator wafers to provide a low-loss substrate for the KIDs. The OMT couples the two polarizations of light from a wide-band feedhorn to separate Nb/SiN/Nb microstrip lines, which are then coupled to Al/Nb lumped-element KIDs (LEKIDs). The silicon on the backside of the OMT is etched away using deep reactive ion etch to release the OMT membrane to enable operation over a wide bandwidth. Finally, the buried oxide is removed underneath the KID capacitors in order to minimize two-level system noise and loss mitigation. We achieved a good yield (> 80%) on our prototype devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-020-02341-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6437-5974</orcidid><orcidid>https://orcid.org/0000000264375974</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2020-04, Vol.199 (1-2), p.362-368 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_osti_scitechconnect_1817183 |
source | Springer Link |
subjects | Aluminum Arrays Big Bang theory Characterization and Evaluation of Materials Condensed Matter Physics Cosmic microwave background Cosmology Detectors fabrication Frequencies Inductance kinetic inductance detector Low temperature physics Magnetic Materials Magnetism Microstrip transmission lines Multiplexing Niobium Noise sensitivity OTHER INSTRUMENTATION Physics Physics and Astronomy Prototypes Sensors Silicon Substrates |
title | Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20OMT-Coupled%20Kinetic%20Inductance%20Detector%20for%20CMB%20Detection&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Tang,%20Q.%20Y.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-04-01&rft.volume=199&rft.issue=1-2&rft.spage=362&rft.epage=368&rft.pages=362-368&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-020-02341-5&rft_dat=%3Cproquest_osti_%3E2388318597%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388318597&rft_id=info:pmid/&rfr_iscdi=true |