Loading…

Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection

Future cosmic microwave background (CMB) experiments, including the large scale ground-based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of low temperature physics 2020-04, Vol.199 (1-2), p.362-368
Main Authors: Tang, Q. Y., Barry, P. S., Cecil, T. W., Shirokoff, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933
cites cdi_FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933
container_end_page 368
container_issue 1-2
container_start_page 362
container_title Journal of low temperature physics
container_volume 199
creator Tang, Q. Y.
Barry, P. S.
Cecil, T. W.
Shirokoff, E.
description Future cosmic microwave background (CMB) experiments, including the large scale ground-based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensitivity, more than 100,000 detectors will be needed. Arrays of kinetic inductance detectors (KIDs) are a promising alternative for experiments that require large number of detectors due to the intrinsic multiplexing capabilities. We present the fabrication procedure for a prototype planar orthomode transducer (OMT)-coupled multi-color KID array optimized for 220/270 GHz frequency bands. These devices are made from silicon-on-insulator wafers to provide a low-loss substrate for the KIDs. The OMT couples the two polarizations of light from a wide-band feedhorn to separate Nb/SiN/Nb microstrip lines, which are then coupled to Al/Nb lumped-element KIDs (LEKIDs). The silicon on the backside of the OMT is etched away using deep reactive ion etch to release the OMT membrane to enable operation over a wide bandwidth. Finally, the buried oxide is removed underneath the KID capacitors in order to minimize two-level system noise and loss mitigation. We achieved a good yield (> 80%) on our prototype devices.
doi_str_mv 10.1007/s10909-020-02341-5
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1817183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388318597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gimANnO47tEQKlFa26lNlyHAdSlbjYzsC_xyWV2BhOJ52-9-7pIXSN4Q4D8PuAQYLMgUAaWuCcnaAJZpzmnDJ-iiYAhOSESHyOLkLYAoAUJZ2g-UzXvjM6dq7PXJutV5u8csN-Z5vstett7Ey26JvBRN0bmz3ZaE10PmvTVKvH4yGJL9FZq3fBXh33FL3NnjfVPF-uXxbVwzI3tChjrmtjjcW1rAuBW0M0Fpq1HKglUBDCJWkxBVYwAdByQRqtjWxKXoqaNVxSOkU3o68LsVPBdOn_h3F9n2IoLDDH4gDdjtDeu6_Bhqi2bvB9yqUIFYJiwSRPFBkp410I3rZq77tP7b8VBnWoVY21qlSr-q1VsSSioygkuH-3_s_6H9UPZFF4KA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388318597</pqid></control><display><type>article</type><title>Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection</title><source>Springer Link</source><creator>Tang, Q. Y. ; Barry, P. S. ; Cecil, T. W. ; Shirokoff, E.</creator><creatorcontrib>Tang, Q. Y. ; Barry, P. S. ; Cecil, T. W. ; Shirokoff, E. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Future cosmic microwave background (CMB) experiments, including the large scale ground-based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensitivity, more than 100,000 detectors will be needed. Arrays of kinetic inductance detectors (KIDs) are a promising alternative for experiments that require large number of detectors due to the intrinsic multiplexing capabilities. We present the fabrication procedure for a prototype planar orthomode transducer (OMT)-coupled multi-color KID array optimized for 220/270 GHz frequency bands. These devices are made from silicon-on-insulator wafers to provide a low-loss substrate for the KIDs. The OMT couples the two polarizations of light from a wide-band feedhorn to separate Nb/SiN/Nb microstrip lines, which are then coupled to Al/Nb lumped-element KIDs (LEKIDs). The silicon on the backside of the OMT is etched away using deep reactive ion etch to release the OMT membrane to enable operation over a wide bandwidth. Finally, the buried oxide is removed underneath the KID capacitors in order to minimize two-level system noise and loss mitigation. We achieved a good yield (&gt; 80%) on our prototype devices.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-020-02341-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Arrays ; Big Bang theory ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Cosmic microwave background ; Cosmology ; Detectors ; fabrication ; Frequencies ; Inductance ; kinetic inductance detector ; Low temperature physics ; Magnetic Materials ; Magnetism ; Microstrip transmission lines ; Multiplexing ; Niobium ; Noise sensitivity ; OTHER INSTRUMENTATION ; Physics ; Physics and Astronomy ; Prototypes ; Sensors ; Silicon ; Substrates</subject><ispartof>Journal of low temperature physics, 2020-04, Vol.199 (1-2), p.362-368</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933</citedby><cites>FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933</cites><orcidid>0000-0002-6437-5974 ; 0000000264375974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1817183$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Q. Y.</creatorcontrib><creatorcontrib>Barry, P. S.</creatorcontrib><creatorcontrib>Cecil, T. W.</creatorcontrib><creatorcontrib>Shirokoff, E.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>Future cosmic microwave background (CMB) experiments, including the large scale ground-based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensitivity, more than 100,000 detectors will be needed. Arrays of kinetic inductance detectors (KIDs) are a promising alternative for experiments that require large number of detectors due to the intrinsic multiplexing capabilities. We present the fabrication procedure for a prototype planar orthomode transducer (OMT)-coupled multi-color KID array optimized for 220/270 GHz frequency bands. These devices are made from silicon-on-insulator wafers to provide a low-loss substrate for the KIDs. The OMT couples the two polarizations of light from a wide-band feedhorn to separate Nb/SiN/Nb microstrip lines, which are then coupled to Al/Nb lumped-element KIDs (LEKIDs). The silicon on the backside of the OMT is etched away using deep reactive ion etch to release the OMT membrane to enable operation over a wide bandwidth. Finally, the buried oxide is removed underneath the KID capacitors in order to minimize two-level system noise and loss mitigation. We achieved a good yield (&gt; 80%) on our prototype devices.</description><subject>Aluminum</subject><subject>Arrays</subject><subject>Big Bang theory</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Cosmic microwave background</subject><subject>Cosmology</subject><subject>Detectors</subject><subject>fabrication</subject><subject>Frequencies</subject><subject>Inductance</subject><subject>kinetic inductance detector</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Microstrip transmission lines</subject><subject>Multiplexing</subject><subject>Niobium</subject><subject>Noise sensitivity</subject><subject>OTHER INSTRUMENTATION</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Prototypes</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Substrates</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5gimANnO47tEQKlFa26lNlyHAdSlbjYzsC_xyWV2BhOJ52-9-7pIXSN4Q4D8PuAQYLMgUAaWuCcnaAJZpzmnDJ-iiYAhOSESHyOLkLYAoAUJZ2g-UzXvjM6dq7PXJutV5u8csN-Z5vstett7Ey26JvBRN0bmz3ZaE10PmvTVKvH4yGJL9FZq3fBXh33FL3NnjfVPF-uXxbVwzI3tChjrmtjjcW1rAuBW0M0Fpq1HKglUBDCJWkxBVYwAdByQRqtjWxKXoqaNVxSOkU3o68LsVPBdOn_h3F9n2IoLDDH4gDdjtDeu6_Bhqi2bvB9yqUIFYJiwSRPFBkp410I3rZq77tP7b8VBnWoVY21qlSr-q1VsSSioygkuH-3_s_6H9UPZFF4KA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Tang, Q. Y.</creator><creator>Barry, P. S.</creator><creator>Cecil, T. W.</creator><creator>Shirokoff, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6437-5974</orcidid><orcidid>https://orcid.org/0000000264375974</orcidid></search><sort><creationdate>20200401</creationdate><title>Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection</title><author>Tang, Q. Y. ; Barry, P. S. ; Cecil, T. W. ; Shirokoff, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Arrays</topic><topic>Big Bang theory</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Cosmic microwave background</topic><topic>Cosmology</topic><topic>Detectors</topic><topic>fabrication</topic><topic>Frequencies</topic><topic>Inductance</topic><topic>kinetic inductance detector</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Microstrip transmission lines</topic><topic>Multiplexing</topic><topic>Niobium</topic><topic>Noise sensitivity</topic><topic>OTHER INSTRUMENTATION</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Prototypes</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Q. Y.</creatorcontrib><creatorcontrib>Barry, P. S.</creatorcontrib><creatorcontrib>Cecil, T. W.</creatorcontrib><creatorcontrib>Shirokoff, E.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Q. Y.</au><au>Barry, P. S.</au><au>Cecil, T. W.</au><au>Shirokoff, E.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>199</volume><issue>1-2</issue><spage>362</spage><epage>368</epage><pages>362-368</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>Future cosmic microwave background (CMB) experiments, including the large scale ground-based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensitivity, more than 100,000 detectors will be needed. Arrays of kinetic inductance detectors (KIDs) are a promising alternative for experiments that require large number of detectors due to the intrinsic multiplexing capabilities. We present the fabrication procedure for a prototype planar orthomode transducer (OMT)-coupled multi-color KID array optimized for 220/270 GHz frequency bands. These devices are made from silicon-on-insulator wafers to provide a low-loss substrate for the KIDs. The OMT couples the two polarizations of light from a wide-band feedhorn to separate Nb/SiN/Nb microstrip lines, which are then coupled to Al/Nb lumped-element KIDs (LEKIDs). The silicon on the backside of the OMT is etched away using deep reactive ion etch to release the OMT membrane to enable operation over a wide bandwidth. Finally, the buried oxide is removed underneath the KID capacitors in order to minimize two-level system noise and loss mitigation. We achieved a good yield (&gt; 80%) on our prototype devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-020-02341-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6437-5974</orcidid><orcidid>https://orcid.org/0000000264375974</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2020-04, Vol.199 (1-2), p.362-368
issn 0022-2291
1573-7357
language eng
recordid cdi_osti_scitechconnect_1817183
source Springer Link
subjects Aluminum
Arrays
Big Bang theory
Characterization and Evaluation of Materials
Condensed Matter Physics
Cosmic microwave background
Cosmology
Detectors
fabrication
Frequencies
Inductance
kinetic inductance detector
Low temperature physics
Magnetic Materials
Magnetism
Microstrip transmission lines
Multiplexing
Niobium
Noise sensitivity
OTHER INSTRUMENTATION
Physics
Physics and Astronomy
Prototypes
Sensors
Silicon
Substrates
title Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20OMT-Coupled%20Kinetic%20Inductance%20Detector%20for%20CMB%20Detection&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Tang,%20Q.%20Y.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-04-01&rft.volume=199&rft.issue=1-2&rft.spage=362&rft.epage=368&rft.pages=362-368&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-020-02341-5&rft_dat=%3Cproquest_osti_%3E2388318597%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-abcece1b9b481fc2a18a5f703e20422792f130545800f782daac9d6768b5d7933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388318597&rft_id=info:pmid/&rfr_iscdi=true