Loading…

Development of High-Efficiency GaAs Solar Cells Grown on Nanopatterned GaAs Substrates

One approach to reducing the cost of high-efficiency III–V devices involves adding patterned layers to heteroepitaxial or homoepitaxial substrates to facilitate substrate removal and reuse. However, few studies have focused explicitly on high-quality devices grown over patterned substrates, which is...

Full description

Saved in:
Bibliographic Details
Published in:Crystal growth & design 2021-10, Vol.21 (10), p.5955-5960
Main Authors: Mangum, John S, Theingi, San, Steiner, Myles A, McMahon, William E, Warren, Emily L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One approach to reducing the cost of high-efficiency III–V devices involves adding patterned layers to heteroepitaxial or homoepitaxial substrates to facilitate substrate removal and reuse. However, few studies have focused explicitly on high-quality devices grown over patterned substrates, which is required for any cost saving to be beneficial. In this work, we demonstrate the growth of high-efficiency GaAs solar cells on GaAs substrates patterned with an array of nanoscale SiO X mask stripes. We show that reducing the pattern dimensions to submicron length scales with nanoimprint lithography enables defect-free coalescence. By varying the growth conditions, faceting of the epilayer material during overgrowth of the patterned mask was also controlled. A V/III ratio of 200 during MOVPE overgrowth produced smooth coalesced epilayers, which is desirable for the growth of subsequent device layers. Inverted GaAs front homojunction devices grown on patterned GaAs(001) substrates achieved threading dislocation densities below 5 × 105 cm–2 and maintained >23% solar cell efficiencies at one sun illumination, equivalent to control devices grown on unpatterned epi-ready substrates.
ISSN:1528-7483
1528-7505
DOI:10.1021/acs.cgd.1c00835