Loading…
Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe
The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time ar...
Saved in:
Published in: | Advanced materials (Weinheim) 2021-11, Vol.33 (44), p.e2104908-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3 |
container_end_page | n/a |
container_issue | 44 |
container_start_page | e2104908 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Lin, Wenwen He, Jiangang Su, Xianli Zhang, Xiaomi Xia, Yi Bailey, Trevor P. Stoumpos, Constantinos C. Tan, Ganjian Rettie, Alexander J. E. Chung, Duck Young Dravid, Vinayak P. Uher, Ctirad Wolverton, Chris Kanatzidis, Mercouri G. |
description | The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.
Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described. |
doi_str_mv | 10.1002/adma.202104908 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1822530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2589939982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3</originalsourceid><addsrcrecordid>eNqF0b9vGyEUB3BUNVLdpGtn1CwZeg7H_TCMlmM3lWJliDMj4B4xET4S4GL5vy_Xq1opS6c3vM_3CfRF6GtJ5iUh9Fp2BzmnhJak5oR9QLOyoWVRE958RDPCq6bgbc0-oc8xPhNCeEvaGfKPLgXp_BHv9hAO0uGV77tBJ_tm0-k73g4uWSX7Dq8d6BR8bzV-SCGLIQAeF7f2aT-lPfw2WWzs07j2Bm8h2IRtj3duNTzABToz0kX48meeo8fNere6Le7uf_xcLe8KXbOKFYaahelgwSsDsuKKMcUazhaMUk6VUSbPWvJS6qbrFPBOckqbVnXAFFHMVOfo23TXx2RF1DaB3mvf9_mBosxnmopkdDWhl-BfB4hJHGzU4JzswQ9R0GZBeZUvt5levqPPfgh9_kJWjGfFGc1qPikdfIwBjHgJ9iDDSZREjCWJsSTxt6Qc4FPgaB2c_qPF8ma7_Jf9BVmhlpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589939982</pqid></control><display><type>article</type><title>Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lin, Wenwen ; He, Jiangang ; Su, Xianli ; Zhang, Xiaomi ; Xia, Yi ; Bailey, Trevor P. ; Stoumpos, Constantinos C. ; Tan, Ganjian ; Rettie, Alexander J. E. ; Chung, Duck Young ; Dravid, Vinayak P. ; Uher, Ctirad ; Wolverton, Chris ; Kanatzidis, Mercouri G.</creator><creatorcontrib>Lin, Wenwen ; He, Jiangang ; Su, Xianli ; Zhang, Xiaomi ; Xia, Yi ; Bailey, Trevor P. ; Stoumpos, Constantinos C. ; Tan, Ganjian ; Rettie, Alexander J. E. ; Chung, Duck Young ; Dravid, Vinayak P. ; Uher, Ctirad ; Wolverton, Chris ; Kanatzidis, Mercouri G.</creatorcontrib><description>The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.
Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202104908</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acoustic velocity ; Anharmonicity ; Atomic properties ; Bonding strength ; chalcogenides ; Chemical bonds ; Conductivity ; Electrical resistivity ; Electronic structure ; Electrons ; Energy conversion ; Entanglement ; Figure of merit ; Heat conductivity ; Heat transfer ; Materials science ; narrow‐gap semiconductors ; Phonons ; Power factor ; Seebeck effect ; Tetrahedra ; Thermal conductivity ; Thermoelectric materials ; Valence band</subject><ispartof>Advanced materials (Weinheim), 2021-11, Vol.33 (44), p.e2104908-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3</citedby><cites>FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3</cites><orcidid>0000-0003-2037-4168 ; 0000000320374168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1822530$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Wenwen</creatorcontrib><creatorcontrib>He, Jiangang</creatorcontrib><creatorcontrib>Su, Xianli</creatorcontrib><creatorcontrib>Zhang, Xiaomi</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Bailey, Trevor P.</creatorcontrib><creatorcontrib>Stoumpos, Constantinos C.</creatorcontrib><creatorcontrib>Tan, Ganjian</creatorcontrib><creatorcontrib>Rettie, Alexander J. E.</creatorcontrib><creatorcontrib>Chung, Duck Young</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Uher, Ctirad</creatorcontrib><creatorcontrib>Wolverton, Chris</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><title>Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe</title><title>Advanced materials (Weinheim)</title><description>The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.
Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described.</description><subject>Acoustic velocity</subject><subject>Anharmonicity</subject><subject>Atomic properties</subject><subject>Bonding strength</subject><subject>chalcogenides</subject><subject>Chemical bonds</subject><subject>Conductivity</subject><subject>Electrical resistivity</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Energy conversion</subject><subject>Entanglement</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials science</subject><subject>narrow‐gap semiconductors</subject><subject>Phonons</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Tetrahedra</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Valence band</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0b9vGyEUB3BUNVLdpGtn1CwZeg7H_TCMlmM3lWJliDMj4B4xET4S4GL5vy_Xq1opS6c3vM_3CfRF6GtJ5iUh9Fp2BzmnhJak5oR9QLOyoWVRE958RDPCq6bgbc0-oc8xPhNCeEvaGfKPLgXp_BHv9hAO0uGV77tBJ_tm0-k73g4uWSX7Dq8d6BR8bzV-SCGLIQAeF7f2aT-lPfw2WWzs07j2Bm8h2IRtj3duNTzABToz0kX48meeo8fNere6Le7uf_xcLe8KXbOKFYaahelgwSsDsuKKMcUazhaMUk6VUSbPWvJS6qbrFPBOckqbVnXAFFHMVOfo23TXx2RF1DaB3mvf9_mBosxnmopkdDWhl-BfB4hJHGzU4JzswQ9R0GZBeZUvt5levqPPfgh9_kJWjGfFGc1qPikdfIwBjHgJ9iDDSZREjCWJsSTxt6Qc4FPgaB2c_qPF8ma7_Jf9BVmhlpQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Lin, Wenwen</creator><creator>He, Jiangang</creator><creator>Su, Xianli</creator><creator>Zhang, Xiaomi</creator><creator>Xia, Yi</creator><creator>Bailey, Trevor P.</creator><creator>Stoumpos, Constantinos C.</creator><creator>Tan, Ganjian</creator><creator>Rettie, Alexander J. E.</creator><creator>Chung, Duck Young</creator><creator>Dravid, Vinayak P.</creator><creator>Uher, Ctirad</creator><creator>Wolverton, Chris</creator><creator>Kanatzidis, Mercouri G.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2037-4168</orcidid><orcidid>https://orcid.org/0000000320374168</orcidid></search><sort><creationdate>20211101</creationdate><title>Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe</title><author>Lin, Wenwen ; He, Jiangang ; Su, Xianli ; Zhang, Xiaomi ; Xia, Yi ; Bailey, Trevor P. ; Stoumpos, Constantinos C. ; Tan, Ganjian ; Rettie, Alexander J. E. ; Chung, Duck Young ; Dravid, Vinayak P. ; Uher, Ctirad ; Wolverton, Chris ; Kanatzidis, Mercouri G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic velocity</topic><topic>Anharmonicity</topic><topic>Atomic properties</topic><topic>Bonding strength</topic><topic>chalcogenides</topic><topic>Chemical bonds</topic><topic>Conductivity</topic><topic>Electrical resistivity</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Energy conversion</topic><topic>Entanglement</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials science</topic><topic>narrow‐gap semiconductors</topic><topic>Phonons</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Tetrahedra</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Wenwen</creatorcontrib><creatorcontrib>He, Jiangang</creatorcontrib><creatorcontrib>Su, Xianli</creatorcontrib><creatorcontrib>Zhang, Xiaomi</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Bailey, Trevor P.</creatorcontrib><creatorcontrib>Stoumpos, Constantinos C.</creatorcontrib><creatorcontrib>Tan, Ganjian</creatorcontrib><creatorcontrib>Rettie, Alexander J. E.</creatorcontrib><creatorcontrib>Chung, Duck Young</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Uher, Ctirad</creatorcontrib><creatorcontrib>Wolverton, Chris</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Wenwen</au><au>He, Jiangang</au><au>Su, Xianli</au><au>Zhang, Xiaomi</au><au>Xia, Yi</au><au>Bailey, Trevor P.</au><au>Stoumpos, Constantinos C.</au><au>Tan, Ganjian</au><au>Rettie, Alexander J. E.</au><au>Chung, Duck Young</au><au>Dravid, Vinayak P.</au><au>Uher, Ctirad</au><au>Wolverton, Chris</au><au>Kanatzidis, Mercouri G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>33</volume><issue>44</issue><spage>e2104908</spage><epage>n/a</epage><pages>e2104908-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.
Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202104908</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2037-4168</orcidid><orcidid>https://orcid.org/0000000320374168</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-11, Vol.33 (44), p.e2104908-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1822530 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Acoustic velocity Anharmonicity Atomic properties Bonding strength chalcogenides Chemical bonds Conductivity Electrical resistivity Electronic structure Electrons Energy conversion Entanglement Figure of merit Heat conductivity Heat transfer Materials science narrow‐gap semiconductors Phonons Power factor Seebeck effect Tetrahedra Thermal conductivity Thermoelectric materials Valence band |
title | Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%20Thermal%20Conductivity,%20Multiband%20Electronic%20Structure%20and%20High%20Thermoelectric%20Figure%20of%20Merit%20in%20TlCuSe&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lin,%20Wenwen&rft.date=2021-11-01&rft.volume=33&rft.issue=44&rft.spage=e2104908&rft.epage=n/a&rft.pages=e2104908-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202104908&rft_dat=%3Cproquest_osti_%3E2589939982%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2589939982&rft_id=info:pmid/&rfr_iscdi=true |