Loading…

Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe

The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time ar...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2021-11, Vol.33 (44), p.e2104908-n/a
Main Authors: Lin, Wenwen, He, Jiangang, Su, Xianli, Zhang, Xiaomi, Xia, Yi, Bailey, Trevor P., Stoumpos, Constantinos C., Tan, Ganjian, Rettie, Alexander J. E., Chung, Duck Young, Dravid, Vinayak P., Uher, Ctirad, Wolverton, Chris, Kanatzidis, Mercouri G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3
cites cdi_FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3
container_end_page n/a
container_issue 44
container_start_page e2104908
container_title Advanced materials (Weinheim)
container_volume 33
creator Lin, Wenwen
He, Jiangang
Su, Xianli
Zhang, Xiaomi
Xia, Yi
Bailey, Trevor P.
Stoumpos, Constantinos C.
Tan, Ganjian
Rettie, Alexander J. E.
Chung, Duck Young
Dravid, Vinayak P.
Uher, Ctirad
Wolverton, Chris
Kanatzidis, Mercouri G.
description The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described.
doi_str_mv 10.1002/adma.202104908
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1822530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2589939982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3</originalsourceid><addsrcrecordid>eNqF0b9vGyEUB3BUNVLdpGtn1CwZeg7H_TCMlmM3lWJliDMj4B4xET4S4GL5vy_Xq1opS6c3vM_3CfRF6GtJ5iUh9Fp2BzmnhJak5oR9QLOyoWVRE958RDPCq6bgbc0-oc8xPhNCeEvaGfKPLgXp_BHv9hAO0uGV77tBJ_tm0-k73g4uWSX7Dq8d6BR8bzV-SCGLIQAeF7f2aT-lPfw2WWzs07j2Bm8h2IRtj3duNTzABToz0kX48meeo8fNere6Le7uf_xcLe8KXbOKFYaahelgwSsDsuKKMcUazhaMUk6VUSbPWvJS6qbrFPBOckqbVnXAFFHMVOfo23TXx2RF1DaB3mvf9_mBosxnmopkdDWhl-BfB4hJHGzU4JzswQ9R0GZBeZUvt5levqPPfgh9_kJWjGfFGc1qPikdfIwBjHgJ9iDDSZREjCWJsSTxt6Qc4FPgaB2c_qPF8ma7_Jf9BVmhlpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589939982</pqid></control><display><type>article</type><title>Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lin, Wenwen ; He, Jiangang ; Su, Xianli ; Zhang, Xiaomi ; Xia, Yi ; Bailey, Trevor P. ; Stoumpos, Constantinos C. ; Tan, Ganjian ; Rettie, Alexander J. E. ; Chung, Duck Young ; Dravid, Vinayak P. ; Uher, Ctirad ; Wolverton, Chris ; Kanatzidis, Mercouri G.</creator><creatorcontrib>Lin, Wenwen ; He, Jiangang ; Su, Xianli ; Zhang, Xiaomi ; Xia, Yi ; Bailey, Trevor P. ; Stoumpos, Constantinos C. ; Tan, Ganjian ; Rettie, Alexander J. E. ; Chung, Duck Young ; Dravid, Vinayak P. ; Uher, Ctirad ; Wolverton, Chris ; Kanatzidis, Mercouri G.</creatorcontrib><description>The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202104908</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acoustic velocity ; Anharmonicity ; Atomic properties ; Bonding strength ; chalcogenides ; Chemical bonds ; Conductivity ; Electrical resistivity ; Electronic structure ; Electrons ; Energy conversion ; Entanglement ; Figure of merit ; Heat conductivity ; Heat transfer ; Materials science ; narrow‐gap semiconductors ; Phonons ; Power factor ; Seebeck effect ; Tetrahedra ; Thermal conductivity ; Thermoelectric materials ; Valence band</subject><ispartof>Advanced materials (Weinheim), 2021-11, Vol.33 (44), p.e2104908-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3</citedby><cites>FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3</cites><orcidid>0000-0003-2037-4168 ; 0000000320374168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1822530$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Wenwen</creatorcontrib><creatorcontrib>He, Jiangang</creatorcontrib><creatorcontrib>Su, Xianli</creatorcontrib><creatorcontrib>Zhang, Xiaomi</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Bailey, Trevor P.</creatorcontrib><creatorcontrib>Stoumpos, Constantinos C.</creatorcontrib><creatorcontrib>Tan, Ganjian</creatorcontrib><creatorcontrib>Rettie, Alexander J. E.</creatorcontrib><creatorcontrib>Chung, Duck Young</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Uher, Ctirad</creatorcontrib><creatorcontrib>Wolverton, Chris</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><title>Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe</title><title>Advanced materials (Weinheim)</title><description>The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described.</description><subject>Acoustic velocity</subject><subject>Anharmonicity</subject><subject>Atomic properties</subject><subject>Bonding strength</subject><subject>chalcogenides</subject><subject>Chemical bonds</subject><subject>Conductivity</subject><subject>Electrical resistivity</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Energy conversion</subject><subject>Entanglement</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials science</subject><subject>narrow‐gap semiconductors</subject><subject>Phonons</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Tetrahedra</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Valence band</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0b9vGyEUB3BUNVLdpGtn1CwZeg7H_TCMlmM3lWJliDMj4B4xET4S4GL5vy_Xq1opS6c3vM_3CfRF6GtJ5iUh9Fp2BzmnhJak5oR9QLOyoWVRE958RDPCq6bgbc0-oc8xPhNCeEvaGfKPLgXp_BHv9hAO0uGV77tBJ_tm0-k73g4uWSX7Dq8d6BR8bzV-SCGLIQAeF7f2aT-lPfw2WWzs07j2Bm8h2IRtj3duNTzABToz0kX48meeo8fNere6Le7uf_xcLe8KXbOKFYaahelgwSsDsuKKMcUazhaMUk6VUSbPWvJS6qbrFPBOckqbVnXAFFHMVOfo23TXx2RF1DaB3mvf9_mBosxnmopkdDWhl-BfB4hJHGzU4JzswQ9R0GZBeZUvt5levqPPfgh9_kJWjGfFGc1qPikdfIwBjHgJ9iDDSZREjCWJsSTxt6Qc4FPgaB2c_qPF8ma7_Jf9BVmhlpQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Lin, Wenwen</creator><creator>He, Jiangang</creator><creator>Su, Xianli</creator><creator>Zhang, Xiaomi</creator><creator>Xia, Yi</creator><creator>Bailey, Trevor P.</creator><creator>Stoumpos, Constantinos C.</creator><creator>Tan, Ganjian</creator><creator>Rettie, Alexander J. E.</creator><creator>Chung, Duck Young</creator><creator>Dravid, Vinayak P.</creator><creator>Uher, Ctirad</creator><creator>Wolverton, Chris</creator><creator>Kanatzidis, Mercouri G.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2037-4168</orcidid><orcidid>https://orcid.org/0000000320374168</orcidid></search><sort><creationdate>20211101</creationdate><title>Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe</title><author>Lin, Wenwen ; He, Jiangang ; Su, Xianli ; Zhang, Xiaomi ; Xia, Yi ; Bailey, Trevor P. ; Stoumpos, Constantinos C. ; Tan, Ganjian ; Rettie, Alexander J. E. ; Chung, Duck Young ; Dravid, Vinayak P. ; Uher, Ctirad ; Wolverton, Chris ; Kanatzidis, Mercouri G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic velocity</topic><topic>Anharmonicity</topic><topic>Atomic properties</topic><topic>Bonding strength</topic><topic>chalcogenides</topic><topic>Chemical bonds</topic><topic>Conductivity</topic><topic>Electrical resistivity</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Energy conversion</topic><topic>Entanglement</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials science</topic><topic>narrow‐gap semiconductors</topic><topic>Phonons</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Tetrahedra</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Wenwen</creatorcontrib><creatorcontrib>He, Jiangang</creatorcontrib><creatorcontrib>Su, Xianli</creatorcontrib><creatorcontrib>Zhang, Xiaomi</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Bailey, Trevor P.</creatorcontrib><creatorcontrib>Stoumpos, Constantinos C.</creatorcontrib><creatorcontrib>Tan, Ganjian</creatorcontrib><creatorcontrib>Rettie, Alexander J. E.</creatorcontrib><creatorcontrib>Chung, Duck Young</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Uher, Ctirad</creatorcontrib><creatorcontrib>Wolverton, Chris</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Wenwen</au><au>He, Jiangang</au><au>Su, Xianli</au><au>Zhang, Xiaomi</au><au>Xia, Yi</au><au>Bailey, Trevor P.</au><au>Stoumpos, Constantinos C.</au><au>Tan, Ganjian</au><au>Rettie, Alexander J. E.</au><au>Chung, Duck Young</au><au>Dravid, Vinayak P.</au><au>Uher, Ctirad</au><au>Wolverton, Chris</au><au>Kanatzidis, Mercouri G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>33</volume><issue>44</issue><spage>e2104908</spage><epage>n/a</epage><pages>e2104908-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p‐type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p‐d* within the edge‐sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF‐type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone‐pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone‐pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ‐point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting in understanding thermoelectric energy conversion. TlCuSe exhibiting intrinsically ultralow thermal conductivity (0.25 W m–1 K–1), a high power factor (11.6 μW cm–1 K–1), and a high figure of merit ZT (1.9) at 643 K is described.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202104908</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2037-4168</orcidid><orcidid>https://orcid.org/0000000320374168</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-11, Vol.33 (44), p.e2104908-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1822530
source Wiley-Blackwell Read & Publish Collection
subjects Acoustic velocity
Anharmonicity
Atomic properties
Bonding strength
chalcogenides
Chemical bonds
Conductivity
Electrical resistivity
Electronic structure
Electrons
Energy conversion
Entanglement
Figure of merit
Heat conductivity
Heat transfer
Materials science
narrow‐gap semiconductors
Phonons
Power factor
Seebeck effect
Tetrahedra
Thermal conductivity
Thermoelectric materials
Valence band
title Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%20Thermal%20Conductivity,%20Multiband%20Electronic%20Structure%20and%20High%20Thermoelectric%20Figure%20of%20Merit%20in%20TlCuSe&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lin,%20Wenwen&rft.date=2021-11-01&rft.volume=33&rft.issue=44&rft.spage=e2104908&rft.epage=n/a&rft.pages=e2104908-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202104908&rft_dat=%3Cproquest_osti_%3E2589939982%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4838-f2f7fde793fea39b88b8598782292bfbf2294a91ac5ddbe9da92256bde8b0b8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2589939982&rft_id=info:pmid/&rfr_iscdi=true