Loading…

Pulse Energy and Pulse Duration Effects in the Ionization and Fragmentation of Iodomethane by Ultraintense Hard X Rays

The interaction of intense femtosecond x-ray pulses with molecules sensitively depends on the interplay between multiple photoabsorptions, Auger decay, charge rearrangement, and nuclear motion. Here, we report on a combined experimental and theoretical study of the ionization and fragmentation of io...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2021-08, Vol.127 (9), p.093202-093202, Article 093202
Main Authors: Li, X., Inhester, L., Robatjazi, S. J., Erk, B., Boll, R., Hanasaki, K., Toyota, K., Hao, Y., Bomme, C., Rudek, B., Foucar, L., Southworth, S. H., Lehmann, C. S., Kraessig, B., Marchenko, T., Simon, M., Ueda, K., Ferguson, K. R., Bucher, M., Gorkhover, T., Carron, S., Alonso-Mori, R., Koglin, J. E., Correa, J., Williams, G. J., Boutet, S., Young, L., Bostedt, C., Son, S.-K., Santra, R., Rolles, D., Rudenko, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interaction of intense femtosecond x-ray pulses with molecules sensitively depends on the interplay between multiple photoabsorptions, Auger decay, charge rearrangement, and nuclear motion. Here, we report on a combined experimental and theoretical study of the ionization and fragmentation of iodomethane (CH3I) by ultraintense (∼ 1019 W/cm2) x-ray pulses at 8.3 keV, demonstrating how these dynamics depend on the x-ray pulse energy and duration. We show that the timing of multiple ionization steps leading to a particular reaction product and, thus, the product's final kinetic energy, is determined by the pulse duration rather than the pulse energy or intensity. While the overall degree of ionization is mainly defined by the pulse energy, our measurement reveals that the yield of the fragments with the highest charge states is enhanced for short pulse durations, in contrast to earlier observations for atoms and small molecules in the soft x-ray domain. We attribute this effect to a decreased charge transfer efficiency at larger internuclear separations, which are reached during longer pulses.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.127.093202