Loading…
High-fidelity wind farm simulation methodology with experimental validation
The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A compr...
Saved in:
Published in: | Journal of wind engineering and industrial aerodynamics 2021-11, Vol.218, p.104754, Article 104754 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13 |
container_end_page | |
container_issue | |
container_start_page | 104754 |
container_title | Journal of wind engineering and industrial aerodynamics |
container_volume | 218 |
creator | Hsieh, Alan S. Brown, Kenneth A. deVelder, Nathaniel B. Herges, Thomas G. Knaus, Robert C. Sakievich, Philip J. Cheung, Lawrence C. Houchens, Brent C. Blaylock, Myra L. Maniaci, David C. |
description | The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data.
•A simulation methodology is proposed to effectively match local atmospheric conditions to experiment.•Experimental and simulation uncertainty are characterized in experimental validation comparisons.•Effect of mesh refinement is quantified for atmospheric, turbine, and wake quantities of interest.•Simulated lidar model was successful at capturing higher-order experimental wake profile trends. |
doi_str_mv | 10.1016/j.jweia.2021.104754 |
format | article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1827603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167610521002336</els_id><sourcerecordid>S0167610521002336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwBSwRe8pznMTJwIAqoIhKLDBbjv3cOEriKjYt_D1Jw8z0pKdzr64OIbcUVhRoft-smiNauUogoeMn5Vl6Rha04Elc0JKfk8VI8TinkF2SK-8bAOApZwvytrG7OjZWY2vDT3S0vY6MHLrI2-6rlcG6Puow1E671u0mINQRfu9xsB32QbbRQbZWn8BrcmFk6_Hm7y7J5_PTx3oTb99fXteP21gxnoWYach1ygwzCWYVokwLyjHXCc9NWVU5goKES5pWkJksoUVZSABTpiWtACRlS3I39zofrPDKBlS1cn2PKghajD3ARojNkBqc9wMasR8ny-FHUBCTNNGIkzQxSROztDH1MKdw3H-wOEz12CvUdpjatbP_5n8BYZN28g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-fidelity wind farm simulation methodology with experimental validation</title><source>ScienceDirect Freedom Collection</source><creator>Hsieh, Alan S. ; Brown, Kenneth A. ; deVelder, Nathaniel B. ; Herges, Thomas G. ; Knaus, Robert C. ; Sakievich, Philip J. ; Cheung, Lawrence C. ; Houchens, Brent C. ; Blaylock, Myra L. ; Maniaci, David C.</creator><creatorcontrib>Hsieh, Alan S. ; Brown, Kenneth A. ; deVelder, Nathaniel B. ; Herges, Thomas G. ; Knaus, Robert C. ; Sakievich, Philip J. ; Cheung, Lawrence C. ; Houchens, Brent C. ; Blaylock, Myra L. ; Maniaci, David C. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data.
•A simulation methodology is proposed to effectively match local atmospheric conditions to experiment.•Experimental and simulation uncertainty are characterized in experimental validation comparisons.•Effect of mesh refinement is quantified for atmospheric, turbine, and wake quantities of interest.•Simulated lidar model was successful at capturing higher-order experimental wake profile trends.</description><identifier>ISSN: 0167-6105</identifier><identifier>EISSN: 1872-8197</identifier><identifier>DOI: 10.1016/j.jweia.2021.104754</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Experimental Validation ; LES ; Mesh Refinement ; WIND ENERGY</subject><ispartof>Journal of wind engineering and industrial aerodynamics, 2021-11, Vol.218, p.104754, Article 104754</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13</citedby><cites>FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13</cites><orcidid>0000-0003-3939-066X ; 0000-0002-7697-4739 ; 0000-0003-2916-9793 ; 0000-0003-4994-0047 ; 0000-0002-6967-0585 ; 0000000269670585 ; 000000033939066X ; 0000000329169793 ; 0000000276974739 ; 0000000349940047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1827603$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Alan S.</creatorcontrib><creatorcontrib>Brown, Kenneth A.</creatorcontrib><creatorcontrib>deVelder, Nathaniel B.</creatorcontrib><creatorcontrib>Herges, Thomas G.</creatorcontrib><creatorcontrib>Knaus, Robert C.</creatorcontrib><creatorcontrib>Sakievich, Philip J.</creatorcontrib><creatorcontrib>Cheung, Lawrence C.</creatorcontrib><creatorcontrib>Houchens, Brent C.</creatorcontrib><creatorcontrib>Blaylock, Myra L.</creatorcontrib><creatorcontrib>Maniaci, David C.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>High-fidelity wind farm simulation methodology with experimental validation</title><title>Journal of wind engineering and industrial aerodynamics</title><description>The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data.
•A simulation methodology is proposed to effectively match local atmospheric conditions to experiment.•Experimental and simulation uncertainty are characterized in experimental validation comparisons.•Effect of mesh refinement is quantified for atmospheric, turbine, and wake quantities of interest.•Simulated lidar model was successful at capturing higher-order experimental wake profile trends.</description><subject>Experimental Validation</subject><subject>LES</subject><subject>Mesh Refinement</subject><subject>WIND ENERGY</subject><issn>0167-6105</issn><issn>1872-8197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwBSwRe8pznMTJwIAqoIhKLDBbjv3cOEriKjYt_D1Jw8z0pKdzr64OIbcUVhRoft-smiNauUogoeMn5Vl6Rha04Elc0JKfk8VI8TinkF2SK-8bAOApZwvytrG7OjZWY2vDT3S0vY6MHLrI2-6rlcG6Puow1E671u0mINQRfu9xsB32QbbRQbZWn8BrcmFk6_Hm7y7J5_PTx3oTb99fXteP21gxnoWYach1ygwzCWYVokwLyjHXCc9NWVU5goKES5pWkJksoUVZSABTpiWtACRlS3I39zofrPDKBlS1cn2PKghajD3ARojNkBqc9wMasR8ny-FHUBCTNNGIkzQxSROztDH1MKdw3H-wOEz12CvUdpjatbP_5n8BYZN28g</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hsieh, Alan S.</creator><creator>Brown, Kenneth A.</creator><creator>deVelder, Nathaniel B.</creator><creator>Herges, Thomas G.</creator><creator>Knaus, Robert C.</creator><creator>Sakievich, Philip J.</creator><creator>Cheung, Lawrence C.</creator><creator>Houchens, Brent C.</creator><creator>Blaylock, Myra L.</creator><creator>Maniaci, David C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3939-066X</orcidid><orcidid>https://orcid.org/0000-0002-7697-4739</orcidid><orcidid>https://orcid.org/0000-0003-2916-9793</orcidid><orcidid>https://orcid.org/0000-0003-4994-0047</orcidid><orcidid>https://orcid.org/0000-0002-6967-0585</orcidid><orcidid>https://orcid.org/0000000269670585</orcidid><orcidid>https://orcid.org/000000033939066X</orcidid><orcidid>https://orcid.org/0000000329169793</orcidid><orcidid>https://orcid.org/0000000276974739</orcidid><orcidid>https://orcid.org/0000000349940047</orcidid></search><sort><creationdate>20211101</creationdate><title>High-fidelity wind farm simulation methodology with experimental validation</title><author>Hsieh, Alan S. ; Brown, Kenneth A. ; deVelder, Nathaniel B. ; Herges, Thomas G. ; Knaus, Robert C. ; Sakievich, Philip J. ; Cheung, Lawrence C. ; Houchens, Brent C. ; Blaylock, Myra L. ; Maniaci, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Experimental Validation</topic><topic>LES</topic><topic>Mesh Refinement</topic><topic>WIND ENERGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Alan S.</creatorcontrib><creatorcontrib>Brown, Kenneth A.</creatorcontrib><creatorcontrib>deVelder, Nathaniel B.</creatorcontrib><creatorcontrib>Herges, Thomas G.</creatorcontrib><creatorcontrib>Knaus, Robert C.</creatorcontrib><creatorcontrib>Sakievich, Philip J.</creatorcontrib><creatorcontrib>Cheung, Lawrence C.</creatorcontrib><creatorcontrib>Houchens, Brent C.</creatorcontrib><creatorcontrib>Blaylock, Myra L.</creatorcontrib><creatorcontrib>Maniaci, David C.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Alan S.</au><au>Brown, Kenneth A.</au><au>deVelder, Nathaniel B.</au><au>Herges, Thomas G.</au><au>Knaus, Robert C.</au><au>Sakievich, Philip J.</au><au>Cheung, Lawrence C.</au><au>Houchens, Brent C.</au><au>Blaylock, Myra L.</au><au>Maniaci, David C.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-fidelity wind farm simulation methodology with experimental validation</atitle><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>218</volume><spage>104754</spage><pages>104754-</pages><artnum>104754</artnum><issn>0167-6105</issn><eissn>1872-8197</eissn><abstract>The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data.
•A simulation methodology is proposed to effectively match local atmospheric conditions to experiment.•Experimental and simulation uncertainty are characterized in experimental validation comparisons.•Effect of mesh refinement is quantified for atmospheric, turbine, and wake quantities of interest.•Simulated lidar model was successful at capturing higher-order experimental wake profile trends.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jweia.2021.104754</doi><orcidid>https://orcid.org/0000-0003-3939-066X</orcidid><orcidid>https://orcid.org/0000-0002-7697-4739</orcidid><orcidid>https://orcid.org/0000-0003-2916-9793</orcidid><orcidid>https://orcid.org/0000-0003-4994-0047</orcidid><orcidid>https://orcid.org/0000-0002-6967-0585</orcidid><orcidid>https://orcid.org/0000000269670585</orcidid><orcidid>https://orcid.org/000000033939066X</orcidid><orcidid>https://orcid.org/0000000329169793</orcidid><orcidid>https://orcid.org/0000000276974739</orcidid><orcidid>https://orcid.org/0000000349940047</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6105 |
ispartof | Journal of wind engineering and industrial aerodynamics, 2021-11, Vol.218, p.104754, Article 104754 |
issn | 0167-6105 1872-8197 |
language | eng |
recordid | cdi_osti_scitechconnect_1827603 |
source | ScienceDirect Freedom Collection |
subjects | Experimental Validation LES Mesh Refinement WIND ENERGY |
title | High-fidelity wind farm simulation methodology with experimental validation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-fidelity%20wind%20farm%20simulation%20methodology%20with%20experimental%20validation&rft.jtitle=Journal%20of%20wind%20engineering%20and%20industrial%20aerodynamics&rft.au=Hsieh,%20Alan%20S.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-11-01&rft.volume=218&rft.spage=104754&rft.pages=104754-&rft.artnum=104754&rft.issn=0167-6105&rft.eissn=1872-8197&rft_id=info:doi/10.1016/j.jweia.2021.104754&rft_dat=%3Celsevier_osti_%3ES0167610521002336%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |