Loading…

High-fidelity wind farm simulation methodology with experimental validation

The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A compr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of wind engineering and industrial aerodynamics 2021-11, Vol.218, p.104754, Article 104754
Main Authors: Hsieh, Alan S., Brown, Kenneth A., deVelder, Nathaniel B., Herges, Thomas G., Knaus, Robert C., Sakievich, Philip J., Cheung, Lawrence C., Houchens, Brent C., Blaylock, Myra L., Maniaci, David C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13
cites cdi_FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13
container_end_page
container_issue
container_start_page 104754
container_title Journal of wind engineering and industrial aerodynamics
container_volume 218
creator Hsieh, Alan S.
Brown, Kenneth A.
deVelder, Nathaniel B.
Herges, Thomas G.
Knaus, Robert C.
Sakievich, Philip J.
Cheung, Lawrence C.
Houchens, Brent C.
Blaylock, Myra L.
Maniaci, David C.
description The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data. •A simulation methodology is proposed to effectively match local atmospheric conditions to experiment.•Experimental and simulation uncertainty are characterized in experimental validation comparisons.•Effect of mesh refinement is quantified for atmospheric, turbine, and wake quantities of interest.•Simulated lidar model was successful at capturing higher-order experimental wake profile trends.
doi_str_mv 10.1016/j.jweia.2021.104754
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1827603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167610521002336</els_id><sourcerecordid>S0167610521002336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwBSwRe8pznMTJwIAqoIhKLDBbjv3cOEriKjYt_D1Jw8z0pKdzr64OIbcUVhRoft-smiNauUogoeMn5Vl6Rha04Elc0JKfk8VI8TinkF2SK-8bAOApZwvytrG7OjZWY2vDT3S0vY6MHLrI2-6rlcG6Puow1E671u0mINQRfu9xsB32QbbRQbZWn8BrcmFk6_Hm7y7J5_PTx3oTb99fXteP21gxnoWYach1ygwzCWYVokwLyjHXCc9NWVU5goKES5pWkJksoUVZSABTpiWtACRlS3I39zofrPDKBlS1cn2PKghajD3ARojNkBqc9wMasR8ny-FHUBCTNNGIkzQxSROztDH1MKdw3H-wOEz12CvUdpjatbP_5n8BYZN28g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-fidelity wind farm simulation methodology with experimental validation</title><source>ScienceDirect Freedom Collection</source><creator>Hsieh, Alan S. ; Brown, Kenneth A. ; deVelder, Nathaniel B. ; Herges, Thomas G. ; Knaus, Robert C. ; Sakievich, Philip J. ; Cheung, Lawrence C. ; Houchens, Brent C. ; Blaylock, Myra L. ; Maniaci, David C.</creator><creatorcontrib>Hsieh, Alan S. ; Brown, Kenneth A. ; deVelder, Nathaniel B. ; Herges, Thomas G. ; Knaus, Robert C. ; Sakievich, Philip J. ; Cheung, Lawrence C. ; Houchens, Brent C. ; Blaylock, Myra L. ; Maniaci, David C. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data. •A simulation methodology is proposed to effectively match local atmospheric conditions to experiment.•Experimental and simulation uncertainty are characterized in experimental validation comparisons.•Effect of mesh refinement is quantified for atmospheric, turbine, and wake quantities of interest.•Simulated lidar model was successful at capturing higher-order experimental wake profile trends.</description><identifier>ISSN: 0167-6105</identifier><identifier>EISSN: 1872-8197</identifier><identifier>DOI: 10.1016/j.jweia.2021.104754</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Experimental Validation ; LES ; Mesh Refinement ; WIND ENERGY</subject><ispartof>Journal of wind engineering and industrial aerodynamics, 2021-11, Vol.218, p.104754, Article 104754</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13</citedby><cites>FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13</cites><orcidid>0000-0003-3939-066X ; 0000-0002-7697-4739 ; 0000-0003-2916-9793 ; 0000-0003-4994-0047 ; 0000-0002-6967-0585 ; 0000000269670585 ; 000000033939066X ; 0000000329169793 ; 0000000276974739 ; 0000000349940047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1827603$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Alan S.</creatorcontrib><creatorcontrib>Brown, Kenneth A.</creatorcontrib><creatorcontrib>deVelder, Nathaniel B.</creatorcontrib><creatorcontrib>Herges, Thomas G.</creatorcontrib><creatorcontrib>Knaus, Robert C.</creatorcontrib><creatorcontrib>Sakievich, Philip J.</creatorcontrib><creatorcontrib>Cheung, Lawrence C.</creatorcontrib><creatorcontrib>Houchens, Brent C.</creatorcontrib><creatorcontrib>Blaylock, Myra L.</creatorcontrib><creatorcontrib>Maniaci, David C.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>High-fidelity wind farm simulation methodology with experimental validation</title><title>Journal of wind engineering and industrial aerodynamics</title><description>The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data. •A simulation methodology is proposed to effectively match local atmospheric conditions to experiment.•Experimental and simulation uncertainty are characterized in experimental validation comparisons.•Effect of mesh refinement is quantified for atmospheric, turbine, and wake quantities of interest.•Simulated lidar model was successful at capturing higher-order experimental wake profile trends.</description><subject>Experimental Validation</subject><subject>LES</subject><subject>Mesh Refinement</subject><subject>WIND ENERGY</subject><issn>0167-6105</issn><issn>1872-8197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwBSwRe8pznMTJwIAqoIhKLDBbjv3cOEriKjYt_D1Jw8z0pKdzr64OIbcUVhRoft-smiNauUogoeMn5Vl6Rha04Elc0JKfk8VI8TinkF2SK-8bAOApZwvytrG7OjZWY2vDT3S0vY6MHLrI2-6rlcG6Puow1E671u0mINQRfu9xsB32QbbRQbZWn8BrcmFk6_Hm7y7J5_PTx3oTb99fXteP21gxnoWYach1ygwzCWYVokwLyjHXCc9NWVU5goKES5pWkJksoUVZSABTpiWtACRlS3I39zofrPDKBlS1cn2PKghajD3ARojNkBqc9wMasR8ny-FHUBCTNNGIkzQxSROztDH1MKdw3H-wOEz12CvUdpjatbP_5n8BYZN28g</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hsieh, Alan S.</creator><creator>Brown, Kenneth A.</creator><creator>deVelder, Nathaniel B.</creator><creator>Herges, Thomas G.</creator><creator>Knaus, Robert C.</creator><creator>Sakievich, Philip J.</creator><creator>Cheung, Lawrence C.</creator><creator>Houchens, Brent C.</creator><creator>Blaylock, Myra L.</creator><creator>Maniaci, David C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3939-066X</orcidid><orcidid>https://orcid.org/0000-0002-7697-4739</orcidid><orcidid>https://orcid.org/0000-0003-2916-9793</orcidid><orcidid>https://orcid.org/0000-0003-4994-0047</orcidid><orcidid>https://orcid.org/0000-0002-6967-0585</orcidid><orcidid>https://orcid.org/0000000269670585</orcidid><orcidid>https://orcid.org/000000033939066X</orcidid><orcidid>https://orcid.org/0000000329169793</orcidid><orcidid>https://orcid.org/0000000276974739</orcidid><orcidid>https://orcid.org/0000000349940047</orcidid></search><sort><creationdate>20211101</creationdate><title>High-fidelity wind farm simulation methodology with experimental validation</title><author>Hsieh, Alan S. ; Brown, Kenneth A. ; deVelder, Nathaniel B. ; Herges, Thomas G. ; Knaus, Robert C. ; Sakievich, Philip J. ; Cheung, Lawrence C. ; Houchens, Brent C. ; Blaylock, Myra L. ; Maniaci, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Experimental Validation</topic><topic>LES</topic><topic>Mesh Refinement</topic><topic>WIND ENERGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Alan S.</creatorcontrib><creatorcontrib>Brown, Kenneth A.</creatorcontrib><creatorcontrib>deVelder, Nathaniel B.</creatorcontrib><creatorcontrib>Herges, Thomas G.</creatorcontrib><creatorcontrib>Knaus, Robert C.</creatorcontrib><creatorcontrib>Sakievich, Philip J.</creatorcontrib><creatorcontrib>Cheung, Lawrence C.</creatorcontrib><creatorcontrib>Houchens, Brent C.</creatorcontrib><creatorcontrib>Blaylock, Myra L.</creatorcontrib><creatorcontrib>Maniaci, David C.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Alan S.</au><au>Brown, Kenneth A.</au><au>deVelder, Nathaniel B.</au><au>Herges, Thomas G.</au><au>Knaus, Robert C.</au><au>Sakievich, Philip J.</au><au>Cheung, Lawrence C.</au><au>Houchens, Brent C.</au><au>Blaylock, Myra L.</au><au>Maniaci, David C.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-fidelity wind farm simulation methodology with experimental validation</atitle><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>218</volume><spage>104754</spage><pages>104754-</pages><artnum>104754</artnum><issn>0167-6105</issn><eissn>1872-8197</eissn><abstract>The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data. •A simulation methodology is proposed to effectively match local atmospheric conditions to experiment.•Experimental and simulation uncertainty are characterized in experimental validation comparisons.•Effect of mesh refinement is quantified for atmospheric, turbine, and wake quantities of interest.•Simulated lidar model was successful at capturing higher-order experimental wake profile trends.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jweia.2021.104754</doi><orcidid>https://orcid.org/0000-0003-3939-066X</orcidid><orcidid>https://orcid.org/0000-0002-7697-4739</orcidid><orcidid>https://orcid.org/0000-0003-2916-9793</orcidid><orcidid>https://orcid.org/0000-0003-4994-0047</orcidid><orcidid>https://orcid.org/0000-0002-6967-0585</orcidid><orcidid>https://orcid.org/0000000269670585</orcidid><orcidid>https://orcid.org/000000033939066X</orcidid><orcidid>https://orcid.org/0000000329169793</orcidid><orcidid>https://orcid.org/0000000276974739</orcidid><orcidid>https://orcid.org/0000000349940047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6105
ispartof Journal of wind engineering and industrial aerodynamics, 2021-11, Vol.218, p.104754, Article 104754
issn 0167-6105
1872-8197
language eng
recordid cdi_osti_scitechconnect_1827603
source ScienceDirect Freedom Collection
subjects Experimental Validation
LES
Mesh Refinement
WIND ENERGY
title High-fidelity wind farm simulation methodology with experimental validation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-fidelity%20wind%20farm%20simulation%20methodology%20with%20experimental%20validation&rft.jtitle=Journal%20of%20wind%20engineering%20and%20industrial%20aerodynamics&rft.au=Hsieh,%20Alan%20S.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-11-01&rft.volume=218&rft.spage=104754&rft.pages=104754-&rft.artnum=104754&rft.issn=0167-6105&rft.eissn=1872-8197&rft_id=info:doi/10.1016/j.jweia.2021.104754&rft_dat=%3Celsevier_osti_%3ES0167610521002336%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-3d06d43f3f2e5beea4817e6d276f9bb6e0c027a14b05f521898a00f9491b00a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true