Loading…
MgZnO-Based Negative Capacitance Transparent Thin-Film Transistor Built on Glass
We demonstrate the first wide bandgap oxide based negative capacitance transparent thin-film transistor (NC-TTFT) built on glass. The Mg 0.03 Zn 0.97 O (MZO) semiconductor served as the channel layer and ferroelectric Ni 0.02 Mg 0.15 Zn 0.83 O (NMZO) serves in the gate stack. The Al-doped ZnO (AZO)...
Saved in:
Published in: | IEEE journal of the Electron Devices Society 2021, Vol.9, p.798-803 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-82b56f38772d0bd9c513f90167022c42d9e5124d18b79ecf424241f0fba31c283 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-82b56f38772d0bd9c513f90167022c42d9e5124d18b79ecf424241f0fba31c283 |
container_end_page | 803 |
container_issue | |
container_start_page | 798 |
container_title | IEEE journal of the Electron Devices Society |
container_volume | 9 |
creator | Yu, Fangzhou Hong, Wen-Chiang Li, Guangyuan Li, Yuxuan Lu, Ming Lu, Yicheng |
description | We demonstrate the first wide bandgap oxide based negative capacitance transparent thin-film transistor (NC-TTFT) built on glass. The Mg 0.03 Zn 0.97 O (MZO) semiconductor served as the channel layer and ferroelectric Ni 0.02 Mg 0.15 Zn 0.83 O (NMZO) serves in the gate stack. The Al-doped ZnO (AZO) is employed as the transparent conductive oxide (TCO) for source and drain electrodes. The NC-TTFT on glass shows an average optical transmittance of 91 % in the visible spectrum. The subthreshold swing (SS) value is significantly reduced over the reference transparent thin-film transistor (TTFT) without a ferroelectric layer. The minimum SS value of the NC-TTFT reaches 17 mV/dec. With normally-off operation and high on/off current ratio of 107, this NC-TTFT on glass technology shows promising potential for wearable systems such as augmented reality (AR) smart glasses. |
doi_str_mv | 10.1109/JEDS.2021.3108904 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1829413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9525131</ieee_id><doaj_id>oai_doaj_org_article_ab502da8299c4096b13ccf045bb81724</doaj_id><sourcerecordid>2570191175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-82b56f38772d0bd9c513f90167022c42d9e5124d18b79ecf424241f0fba31c283</originalsourceid><addsrcrecordid>eNpNkU9PAyEQxTdGE436AYyXjZ63MsDuwtFWrRr_JdaLF8KybKXZQgVq4reXuo2ROUAmv_fCzMuyE0AjAMQv7q-vXkcYYRgRQIwjupMdYKhYUdWE7v5772fHISxQOgwqXlUH2cvj_N0-F2MZdJs_6bmM5kvnE7mSykRplc5nXtqwkl7bmM8-jC1uTL8cuiZE5_Px2vQxdzaf9jKEo2yvk33Qx9v7MHu7uZ5NbouH5-nd5PKhUBTzWDDclFVHWF3jFjUtVyWQjiOoaoRxQlquS8C0BdbUXKuO4lTQoa6RBBRm5DC7G3xbJxdi5c1S-m_hpBG_DefnQvpoVK-FbEqEW8kw54oiXjVAlOoQLZuGQY1p8jobvFyIRoQ0uVYfylmrVRSQdBRIgs4HaOXd51qHKBZu7W2aUeCyRsAB6jJRMFDKuxC87v6-BkhswhKbsMQmLLENK2lOB43RWv_xvMRpJ0B-AIFajLg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570191175</pqid></control><display><type>article</type><title>MgZnO-Based Negative Capacitance Transparent Thin-Film Transistor Built on Glass</title><source>IEEE Open Access Journals</source><creator>Yu, Fangzhou ; Hong, Wen-Chiang ; Li, Guangyuan ; Li, Yuxuan ; Lu, Ming ; Lu, Yicheng</creator><creatorcontrib>Yu, Fangzhou ; Hong, Wen-Chiang ; Li, Guangyuan ; Li, Yuxuan ; Lu, Ming ; Lu, Yicheng</creatorcontrib><description>We demonstrate the first wide bandgap oxide based negative capacitance transparent thin-film transistor (NC-TTFT) built on glass. The Mg 0.03 Zn 0.97 O (MZO) semiconductor served as the channel layer and ferroelectric Ni 0.02 Mg 0.15 Zn 0.83 O (NMZO) serves in the gate stack. The Al-doped ZnO (AZO) is employed as the transparent conductive oxide (TCO) for source and drain electrodes. The NC-TTFT on glass shows an average optical transmittance of 91 % in the visible spectrum. The subthreshold swing (SS) value is significantly reduced over the reference transparent thin-film transistor (TTFT) without a ferroelectric layer. The minimum SS value of the NC-TTFT reaches 17 mV/dec. With normally-off operation and high on/off current ratio of 107, this NC-TTFT on glass technology shows promising potential for wearable systems such as augmented reality (AR) smart glasses.</description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2021.3108904</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Augmented reality ; Capacitance ; Eyewear ; Ferroelectric materials ; Ferroelectricity ; Glass ; Logic gates ; Negative capacitance ; Nickel ; Semiconductor devices ; Substrates ; subthreshold swing ; Thin film transistors ; thin-film transistor ; Transistors ; transparent electronics ; Visible spectrum ; Zinc ; Zinc oxide</subject><ispartof>IEEE journal of the Electron Devices Society, 2021, Vol.9, p.798-803</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-82b56f38772d0bd9c513f90167022c42d9e5124d18b79ecf424241f0fba31c283</citedby><cites>FETCH-LOGICAL-c429t-82b56f38772d0bd9c513f90167022c42d9e5124d18b79ecf424241f0fba31c283</cites><orcidid>0000-0003-2596-9646 ; 0000-0003-4894-2999 ; 0000-0002-9299-6065 ; 0000000292996065 ; 0000000348942999 ; 0000000325969646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9525131$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,4024,27633,27923,27924,27925,54933</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1829413$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Fangzhou</creatorcontrib><creatorcontrib>Hong, Wen-Chiang</creatorcontrib><creatorcontrib>Li, Guangyuan</creatorcontrib><creatorcontrib>Li, Yuxuan</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Lu, Yicheng</creatorcontrib><title>MgZnO-Based Negative Capacitance Transparent Thin-Film Transistor Built on Glass</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description>We demonstrate the first wide bandgap oxide based negative capacitance transparent thin-film transistor (NC-TTFT) built on glass. The Mg 0.03 Zn 0.97 O (MZO) semiconductor served as the channel layer and ferroelectric Ni 0.02 Mg 0.15 Zn 0.83 O (NMZO) serves in the gate stack. The Al-doped ZnO (AZO) is employed as the transparent conductive oxide (TCO) for source and drain electrodes. The NC-TTFT on glass shows an average optical transmittance of 91 % in the visible spectrum. The subthreshold swing (SS) value is significantly reduced over the reference transparent thin-film transistor (TTFT) without a ferroelectric layer. The minimum SS value of the NC-TTFT reaches 17 mV/dec. With normally-off operation and high on/off current ratio of 107, this NC-TTFT on glass technology shows promising potential for wearable systems such as augmented reality (AR) smart glasses.</description><subject>Augmented reality</subject><subject>Capacitance</subject><subject>Eyewear</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Glass</subject><subject>Logic gates</subject><subject>Negative capacitance</subject><subject>Nickel</subject><subject>Semiconductor devices</subject><subject>Substrates</subject><subject>subthreshold swing</subject><subject>Thin film transistors</subject><subject>thin-film transistor</subject><subject>Transistors</subject><subject>transparent electronics</subject><subject>Visible spectrum</subject><subject>Zinc</subject><subject>Zinc oxide</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9PAyEQxTdGE436AYyXjZ63MsDuwtFWrRr_JdaLF8KybKXZQgVq4reXuo2ROUAmv_fCzMuyE0AjAMQv7q-vXkcYYRgRQIwjupMdYKhYUdWE7v5772fHISxQOgwqXlUH2cvj_N0-F2MZdJs_6bmM5kvnE7mSykRplc5nXtqwkl7bmM8-jC1uTL8cuiZE5_Px2vQxdzaf9jKEo2yvk33Qx9v7MHu7uZ5NbouH5-nd5PKhUBTzWDDclFVHWF3jFjUtVyWQjiOoaoRxQlquS8C0BdbUXKuO4lTQoa6RBBRm5DC7G3xbJxdi5c1S-m_hpBG_DefnQvpoVK-FbEqEW8kw54oiXjVAlOoQLZuGQY1p8jobvFyIRoQ0uVYfylmrVRSQdBRIgs4HaOXd51qHKBZu7W2aUeCyRsAB6jJRMFDKuxC87v6-BkhswhKbsMQmLLENK2lOB43RWv_xvMRpJ0B-AIFajLg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yu, Fangzhou</creator><creator>Hong, Wen-Chiang</creator><creator>Li, Guangyuan</creator><creator>Li, Yuxuan</creator><creator>Lu, Ming</creator><creator>Lu, Yicheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2596-9646</orcidid><orcidid>https://orcid.org/0000-0003-4894-2999</orcidid><orcidid>https://orcid.org/0000-0002-9299-6065</orcidid><orcidid>https://orcid.org/0000000292996065</orcidid><orcidid>https://orcid.org/0000000348942999</orcidid><orcidid>https://orcid.org/0000000325969646</orcidid></search><sort><creationdate>2021</creationdate><title>MgZnO-Based Negative Capacitance Transparent Thin-Film Transistor Built on Glass</title><author>Yu, Fangzhou ; Hong, Wen-Chiang ; Li, Guangyuan ; Li, Yuxuan ; Lu, Ming ; Lu, Yicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-82b56f38772d0bd9c513f90167022c42d9e5124d18b79ecf424241f0fba31c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Augmented reality</topic><topic>Capacitance</topic><topic>Eyewear</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Glass</topic><topic>Logic gates</topic><topic>Negative capacitance</topic><topic>Nickel</topic><topic>Semiconductor devices</topic><topic>Substrates</topic><topic>subthreshold swing</topic><topic>Thin film transistors</topic><topic>thin-film transistor</topic><topic>Transistors</topic><topic>transparent electronics</topic><topic>Visible spectrum</topic><topic>Zinc</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Fangzhou</creatorcontrib><creatorcontrib>Hong, Wen-Chiang</creatorcontrib><creatorcontrib>Li, Guangyuan</creatorcontrib><creatorcontrib>Li, Yuxuan</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Lu, Yicheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Fangzhou</au><au>Hong, Wen-Chiang</au><au>Li, Guangyuan</au><au>Li, Yuxuan</au><au>Lu, Ming</au><au>Lu, Yicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MgZnO-Based Negative Capacitance Transparent Thin-Film Transistor Built on Glass</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>798</spage><epage>803</epage><pages>798-803</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract>We demonstrate the first wide bandgap oxide based negative capacitance transparent thin-film transistor (NC-TTFT) built on glass. The Mg 0.03 Zn 0.97 O (MZO) semiconductor served as the channel layer and ferroelectric Ni 0.02 Mg 0.15 Zn 0.83 O (NMZO) serves in the gate stack. The Al-doped ZnO (AZO) is employed as the transparent conductive oxide (TCO) for source and drain electrodes. The NC-TTFT on glass shows an average optical transmittance of 91 % in the visible spectrum. The subthreshold swing (SS) value is significantly reduced over the reference transparent thin-film transistor (TTFT) without a ferroelectric layer. The minimum SS value of the NC-TTFT reaches 17 mV/dec. With normally-off operation and high on/off current ratio of 107, this NC-TTFT on glass technology shows promising potential for wearable systems such as augmented reality (AR) smart glasses.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2021.3108904</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2596-9646</orcidid><orcidid>https://orcid.org/0000-0003-4894-2999</orcidid><orcidid>https://orcid.org/0000-0002-9299-6065</orcidid><orcidid>https://orcid.org/0000000292996065</orcidid><orcidid>https://orcid.org/0000000348942999</orcidid><orcidid>https://orcid.org/0000000325969646</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-6734 |
ispartof | IEEE journal of the Electron Devices Society, 2021, Vol.9, p.798-803 |
issn | 2168-6734 2168-6734 |
language | eng |
recordid | cdi_osti_scitechconnect_1829413 |
source | IEEE Open Access Journals |
subjects | Augmented reality Capacitance Eyewear Ferroelectric materials Ferroelectricity Glass Logic gates Negative capacitance Nickel Semiconductor devices Substrates subthreshold swing Thin film transistors thin-film transistor Transistors transparent electronics Visible spectrum Zinc Zinc oxide |
title | MgZnO-Based Negative Capacitance Transparent Thin-Film Transistor Built on Glass |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MgZnO-Based%20Negative%20Capacitance%20Transparent%20Thin-Film%20Transistor%20Built%20on%20Glass&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Yu,%20Fangzhou&rft.date=2021&rft.volume=9&rft.spage=798&rft.epage=803&rft.pages=798-803&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2021.3108904&rft_dat=%3Cproquest_osti_%3E2570191175%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-82b56f38772d0bd9c513f90167022c42d9e5124d18b79ecf424241f0fba31c283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570191175&rft_id=info:pmid/&rft_ieee_id=9525131&rfr_iscdi=true |