Loading…

Polymer Hole Transport Materials for Perovskite Solar Cells via Buchwald–Hartwig Amination

The development of low-cost materials for charge-selective contacts that provide good energetic alignment with perovskite active layers, favorable thermal properties, and lead to efficient photoconversion is becoming an increasingly important aspect of the perovskite solar cell (PSC) field. Presente...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied polymer materials 2021-11, Vol.3 (11), p.5578-5587
Main Authors: Astridge, Daniel D, Hoffman, Jacob B, Zhang, Fei, Park, So Yeon, Zhu, Kai, Sellinger, Alan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of low-cost materials for charge-selective contacts that provide good energetic alignment with perovskite active layers, favorable thermal properties, and lead to efficient photoconversion is becoming an increasingly important aspect of the perovskite solar cell (PSC) field. Presented here is a series of polymers based on a one-pot polymerization of aryl dihalides with primary aryl amines to produce solution-processable polymers in high yield, with simple purification, and promising properties for high performing P-I-N PSC devices. How these properties can be tuned by careful selection of the reactant chemical moieties is discussed. Through this strategy, a wide range of relevant properties such as glass transition temperature, highest occupied molecular orbital tuning, and polydispersity are explored. When implemented into devices using a triple-cation FAMACs perovskite active layer, the hole transport material series shows average power conversion efficiencies (PCE) in excess of 17%, which is comparable to controls using state-of-the-art poly­(triarylamine). How different synthetic parameters such as the reaction time and purification protocol impact device performance is also investigated.
ISSN:2637-6105
2637-6105
DOI:10.1021/acsapm.1c00891