Loading…
Multi-objective optimization with an integrated electromagnetics and beam dynamics workflow
In particle accelerators, RF cavities are used to accelerate charged particle beams to designed high energy for physical applications. In a typical accelerator design, the optimization of RF cavities and the optimization of beam dynamics are carried out in separate studies. For a more general and un...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2021-12, Vol.1020, p.165844, Article 165844 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In particle accelerators, RF cavities are used to accelerate charged particle beams to designed high energy for physical applications. In a typical accelerator design, the optimization of RF cavities and the optimization of beam dynamics are carried out in separate studies. For a more general and unrestricted accelerator design, a coupled optimization of the RF cavities and the beam parameters is required. For this coupled optimization problem, we have developed an integrated electromagnetics and beam dynamics workflow management system. Within this system, the geometries for a set of cavity components are first adjusted; the field modes are then computed with an electromagnetics program, and imported into a beam dynamics program for beam dynamics simulation. This workflow is encapsulated into a parallel multi-objective optimizer to achieve the integrated accelerator design optimization. A multi fidelity strategy is developed to improve the speed of the optimizer. This integrated global optimization capability is illustrated using a photoinjector design example and yields an improved design. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2021.165844 |