Loading…

Using neutrons and x rays to measure plasma conditions in a solid sphere of deuterated polyethylene compressed to densities of 35 g/cc at temperatures of 2 keV and pressures of 40 Gbar

This paper describes an experiment that shock compresses the center of a solid deuterated polyethylene sphere, CD2, to densities of 35 g/cc and temperatures of 2 keV with corresponding pressure of 40 Gbar. The design employs a strong spherically converging shock launched through a solid ball of mate...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2021-12, Vol.28 (12)
Main Authors: Nilsen, J., Bachmann, B., Zimmerman, G. B., Hatarik, R., Döppner, T., Swift, D. C., Hawreliak, J., Collins, G. W., Falcone, R. W., Glenzer, S. H., Kraus, D., Landen, O. L., Castor, J. I., Whitley, H. D., Kritcher, A. L.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page
container_title Physics of plasmas
container_volume 28
creator Nilsen, J.
Bachmann, B.
Zimmerman, G. B.
Hatarik, R.
Döppner, T.
Swift, D. C.
Hawreliak, J.
Collins, G. W.
Falcone, R. W.
Glenzer, S. H.
Kraus, D.
Landen, O. L.
Castor, J. I.
Whitley, H. D.
Kritcher, A. L.
description This paper describes an experiment that shock compresses the center of a solid deuterated polyethylene sphere, CD2, to densities of 35 g/cc and temperatures of 2 keV with corresponding pressure of 40 Gbar. The design employs a strong spherically converging shock launched through a solid ball of material using a Hohlraum radiation drive. As the shock coalesces at the center it produces a hot spot that we characterize by measuring the x-ray self-emission and 2.45 MeV neutrons emitted. Two-dimensional images and time-resolved measurements of the x rays emitted determine the size and time duration of the hot spot, leading to an estimated 2k eV electron temperature. The neutron time of flight spectrometer measures an average ion temperature of 1.06 ± 0.15 keV and neutron yield of 7.0 (±0.5) × 109 DD neutrons. Our new distribution function tool enables us to create a forward model of the experimental data based on 1D radiation-hydrodynamic simulations, leading to a better understanding of the plasma conditions that produce the measured neutrons and x rays. Furthermore, our simulations indicate that the x rays are produced in a short-lived hot-dense core over tens of picoseconds, whereas the neutron emission continues for about 200 ps, as the hot core starts to expand, thereby leading to a lower mean temperature of the plasma during neutron production. This finding is in agreement with the experimental data, and we therefore conclude that the forward-modeling is a useful tool for inferring the conditions of the hot spot in a laser-driven implosion during burn.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1835017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835017</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18350173</originalsourceid><addsrcrecordid>eNqNjstOxDAMRSMEEsPjHyz2FSl9skY8PgAQu5FJPNNAm0SxR6J_xueRVrBnZev6nut7pDal7m-Lru3q42XvdNG29dupOmP-0FrXbdNv1PcLO78HTwdJwTOgt_AFCWcGCTAR8iERxBF5QjDBWydu8TkPCBxGZ4HjQNkTdmBzCiUUshDDOJMM80ieMjfFRMxZz6GWPOcU4gWpGthfGwMoIDTFhc4P19MNfNLrWmiF_-Raw-M7pgt1ssOR6fJ3nqurh_vnu6cisLgtGydkhlzYk5Ft2VeNLrvqX6YfShhltw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using neutrons and x rays to measure plasma conditions in a solid sphere of deuterated polyethylene compressed to densities of 35 g/cc at temperatures of 2 keV and pressures of 40 Gbar</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Nilsen, J. ; Bachmann, B. ; Zimmerman, G. B. ; Hatarik, R. ; Döppner, T. ; Swift, D. C. ; Hawreliak, J. ; Collins, G. W. ; Falcone, R. W. ; Glenzer, S. H. ; Kraus, D. ; Landen, O. L. ; Castor, J. I. ; Whitley, H. D. ; Kritcher, A. L.</creator><creatorcontrib>Nilsen, J. ; Bachmann, B. ; Zimmerman, G. B. ; Hatarik, R. ; Döppner, T. ; Swift, D. C. ; Hawreliak, J. ; Collins, G. W. ; Falcone, R. W. ; Glenzer, S. H. ; Kraus, D. ; Landen, O. L. ; Castor, J. I. ; Whitley, H. D. ; Kritcher, A. L. ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>This paper describes an experiment that shock compresses the center of a solid deuterated polyethylene sphere, CD2, to densities of 35 g/cc and temperatures of 2 keV with corresponding pressure of 40 Gbar. The design employs a strong spherically converging shock launched through a solid ball of material using a Hohlraum radiation drive. As the shock coalesces at the center it produces a hot spot that we characterize by measuring the x-ray self-emission and 2.45 MeV neutrons emitted. Two-dimensional images and time-resolved measurements of the x rays emitted determine the size and time duration of the hot spot, leading to an estimated 2k eV electron temperature. The neutron time of flight spectrometer measures an average ion temperature of 1.06 ± 0.15 keV and neutron yield of 7.0 (±0.5) × 109 DD neutrons. Our new distribution function tool enables us to create a forward model of the experimental data based on 1D radiation-hydrodynamic simulations, leading to a better understanding of the plasma conditions that produce the measured neutrons and x rays. Furthermore, our simulations indicate that the x rays are produced in a short-lived hot-dense core over tens of picoseconds, whereas the neutron emission continues for about 200 ps, as the hot core starts to expand, thereby leading to a lower mean temperature of the plasma during neutron production. This finding is in agreement with the experimental data, and we therefore conclude that the forward-modeling is a useful tool for inferring the conditions of the hot spot in a laser-driven implosion during burn.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; deuterium ; hydrodynamics simulations ; neutron emission ; nuclear fusion ; radiography ; shock waves ; x-ray diagnostics</subject><ispartof>Physics of plasmas, 2021-12, Vol.28 (12)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000181080513 ; 0000000257037125 ; 0000000191120558 ; 0000000223448698 ; 0000000214998217 ; 0000000179920018 ; 0000000248831087 ; 000000029332405X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1835017$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nilsen, J.</creatorcontrib><creatorcontrib>Bachmann, B.</creatorcontrib><creatorcontrib>Zimmerman, G. B.</creatorcontrib><creatorcontrib>Hatarik, R.</creatorcontrib><creatorcontrib>Döppner, T.</creatorcontrib><creatorcontrib>Swift, D. C.</creatorcontrib><creatorcontrib>Hawreliak, J.</creatorcontrib><creatorcontrib>Collins, G. W.</creatorcontrib><creatorcontrib>Falcone, R. W.</creatorcontrib><creatorcontrib>Glenzer, S. H.</creatorcontrib><creatorcontrib>Kraus, D.</creatorcontrib><creatorcontrib>Landen, O. L.</creatorcontrib><creatorcontrib>Castor, J. I.</creatorcontrib><creatorcontrib>Whitley, H. D.</creatorcontrib><creatorcontrib>Kritcher, A. L.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Using neutrons and x rays to measure plasma conditions in a solid sphere of deuterated polyethylene compressed to densities of 35 g/cc at temperatures of 2 keV and pressures of 40 Gbar</title><title>Physics of plasmas</title><description>This paper describes an experiment that shock compresses the center of a solid deuterated polyethylene sphere, CD2, to densities of 35 g/cc and temperatures of 2 keV with corresponding pressure of 40 Gbar. The design employs a strong spherically converging shock launched through a solid ball of material using a Hohlraum radiation drive. As the shock coalesces at the center it produces a hot spot that we characterize by measuring the x-ray self-emission and 2.45 MeV neutrons emitted. Two-dimensional images and time-resolved measurements of the x rays emitted determine the size and time duration of the hot spot, leading to an estimated 2k eV electron temperature. The neutron time of flight spectrometer measures an average ion temperature of 1.06 ± 0.15 keV and neutron yield of 7.0 (±0.5) × 109 DD neutrons. Our new distribution function tool enables us to create a forward model of the experimental data based on 1D radiation-hydrodynamic simulations, leading to a better understanding of the plasma conditions that produce the measured neutrons and x rays. Furthermore, our simulations indicate that the x rays are produced in a short-lived hot-dense core over tens of picoseconds, whereas the neutron emission continues for about 200 ps, as the hot core starts to expand, thereby leading to a lower mean temperature of the plasma during neutron production. This finding is in agreement with the experimental data, and we therefore conclude that the forward-modeling is a useful tool for inferring the conditions of the hot spot in a laser-driven implosion during burn.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>deuterium</subject><subject>hydrodynamics simulations</subject><subject>neutron emission</subject><subject>nuclear fusion</subject><subject>radiography</subject><subject>shock waves</subject><subject>x-ray diagnostics</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjstOxDAMRSMEEsPjHyz2FSl9skY8PgAQu5FJPNNAm0SxR6J_xueRVrBnZev6nut7pDal7m-Lru3q42XvdNG29dupOmP-0FrXbdNv1PcLO78HTwdJwTOgt_AFCWcGCTAR8iERxBF5QjDBWydu8TkPCBxGZ4HjQNkTdmBzCiUUshDDOJMM80ieMjfFRMxZz6GWPOcU4gWpGthfGwMoIDTFhc4P19MNfNLrWmiF_-Raw-M7pgt1ssOR6fJ3nqurh_vnu6cisLgtGydkhlzYk5Ft2VeNLrvqX6YfShhltw</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Nilsen, J.</creator><creator>Bachmann, B.</creator><creator>Zimmerman, G. B.</creator><creator>Hatarik, R.</creator><creator>Döppner, T.</creator><creator>Swift, D. C.</creator><creator>Hawreliak, J.</creator><creator>Collins, G. W.</creator><creator>Falcone, R. W.</creator><creator>Glenzer, S. H.</creator><creator>Kraus, D.</creator><creator>Landen, O. L.</creator><creator>Castor, J. I.</creator><creator>Whitley, H. D.</creator><creator>Kritcher, A. L.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000181080513</orcidid><orcidid>https://orcid.org/0000000257037125</orcidid><orcidid>https://orcid.org/0000000191120558</orcidid><orcidid>https://orcid.org/0000000223448698</orcidid><orcidid>https://orcid.org/0000000214998217</orcidid><orcidid>https://orcid.org/0000000179920018</orcidid><orcidid>https://orcid.org/0000000248831087</orcidid><orcidid>https://orcid.org/000000029332405X</orcidid></search><sort><creationdate>20211207</creationdate><title>Using neutrons and x rays to measure plasma conditions in a solid sphere of deuterated polyethylene compressed to densities of 35 g/cc at temperatures of 2 keV and pressures of 40 Gbar</title><author>Nilsen, J. ; Bachmann, B. ; Zimmerman, G. B. ; Hatarik, R. ; Döppner, T. ; Swift, D. C. ; Hawreliak, J. ; Collins, G. W. ; Falcone, R. W. ; Glenzer, S. H. ; Kraus, D. ; Landen, O. L. ; Castor, J. I. ; Whitley, H. D. ; Kritcher, A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18350173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>deuterium</topic><topic>hydrodynamics simulations</topic><topic>neutron emission</topic><topic>nuclear fusion</topic><topic>radiography</topic><topic>shock waves</topic><topic>x-ray diagnostics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nilsen, J.</creatorcontrib><creatorcontrib>Bachmann, B.</creatorcontrib><creatorcontrib>Zimmerman, G. B.</creatorcontrib><creatorcontrib>Hatarik, R.</creatorcontrib><creatorcontrib>Döppner, T.</creatorcontrib><creatorcontrib>Swift, D. C.</creatorcontrib><creatorcontrib>Hawreliak, J.</creatorcontrib><creatorcontrib>Collins, G. W.</creatorcontrib><creatorcontrib>Falcone, R. W.</creatorcontrib><creatorcontrib>Glenzer, S. H.</creatorcontrib><creatorcontrib>Kraus, D.</creatorcontrib><creatorcontrib>Landen, O. L.</creatorcontrib><creatorcontrib>Castor, J. I.</creatorcontrib><creatorcontrib>Whitley, H. D.</creatorcontrib><creatorcontrib>Kritcher, A. L.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nilsen, J.</au><au>Bachmann, B.</au><au>Zimmerman, G. B.</au><au>Hatarik, R.</au><au>Döppner, T.</au><au>Swift, D. C.</au><au>Hawreliak, J.</au><au>Collins, G. W.</au><au>Falcone, R. W.</au><au>Glenzer, S. H.</au><au>Kraus, D.</au><au>Landen, O. L.</au><au>Castor, J. I.</au><au>Whitley, H. D.</au><au>Kritcher, A. L.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using neutrons and x rays to measure plasma conditions in a solid sphere of deuterated polyethylene compressed to densities of 35 g/cc at temperatures of 2 keV and pressures of 40 Gbar</atitle><jtitle>Physics of plasmas</jtitle><date>2021-12-07</date><risdate>2021</risdate><volume>28</volume><issue>12</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>This paper describes an experiment that shock compresses the center of a solid deuterated polyethylene sphere, CD2, to densities of 35 g/cc and temperatures of 2 keV with corresponding pressure of 40 Gbar. The design employs a strong spherically converging shock launched through a solid ball of material using a Hohlraum radiation drive. As the shock coalesces at the center it produces a hot spot that we characterize by measuring the x-ray self-emission and 2.45 MeV neutrons emitted. Two-dimensional images and time-resolved measurements of the x rays emitted determine the size and time duration of the hot spot, leading to an estimated 2k eV electron temperature. The neutron time of flight spectrometer measures an average ion temperature of 1.06 ± 0.15 keV and neutron yield of 7.0 (±0.5) × 109 DD neutrons. Our new distribution function tool enables us to create a forward model of the experimental data based on 1D radiation-hydrodynamic simulations, leading to a better understanding of the plasma conditions that produce the measured neutrons and x rays. Furthermore, our simulations indicate that the x rays are produced in a short-lived hot-dense core over tens of picoseconds, whereas the neutron emission continues for about 200 ps, as the hot core starts to expand, thereby leading to a lower mean temperature of the plasma during neutron production. This finding is in agreement with the experimental data, and we therefore conclude that the forward-modeling is a useful tool for inferring the conditions of the hot spot in a laser-driven implosion during burn.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000181080513</orcidid><orcidid>https://orcid.org/0000000257037125</orcidid><orcidid>https://orcid.org/0000000191120558</orcidid><orcidid>https://orcid.org/0000000223448698</orcidid><orcidid>https://orcid.org/0000000214998217</orcidid><orcidid>https://orcid.org/0000000179920018</orcidid><orcidid>https://orcid.org/0000000248831087</orcidid><orcidid>https://orcid.org/000000029332405X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2021-12, Vol.28 (12)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1835017
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
deuterium
hydrodynamics simulations
neutron emission
nuclear fusion
radiography
shock waves
x-ray diagnostics
title Using neutrons and x rays to measure plasma conditions in a solid sphere of deuterated polyethylene compressed to densities of 35 g/cc at temperatures of 2 keV and pressures of 40 Gbar
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20neutrons%20and%20x%20rays%20to%20measure%20plasma%20conditions%20in%20a%20solid%20sphere%20of%20deuterated%20polyethylene%20compressed%20to%20densities%20of%2035%20g/cc%20at%20temperatures%20of%202%20keV%20and%20pressures%20of%2040%20Gbar&rft.jtitle=Physics%20of%20plasmas&rft.au=Nilsen,%20J.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2021-12-07&rft.volume=28&rft.issue=12&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/&rft_dat=%3Costi%3E1835017%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18350173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true