Loading…

Food security under high bioenergy demand toward long-term climate goals

Bioenergy is expected to play an important role in the achievement of stringent climate-change mitigation targets requiring the application of negative emissions technology. Using a multi-model framework, we assess the effects of high bioenergy demand on global food production, food security, and co...

Full description

Saved in:
Bibliographic Details
Published in:Climatic change 2020-12, Vol.163 (3), p.1587-1601
Main Authors: Hasegawa, Tomoko, Sands, Ronald D., Brunelle, Thierry, Cui, Yiyun, Frank, Stefan, Fujimori, Shinichiro, Popp, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-bd5bf8a7c9adec3b837ddc3b401e6d37e8e011ff91517740138a238c101e1a413
cites cdi_FETCH-LOGICAL-c390t-bd5bf8a7c9adec3b837ddc3b401e6d37e8e011ff91517740138a238c101e1a413
container_end_page 1601
container_issue 3
container_start_page 1587
container_title Climatic change
container_volume 163
creator Hasegawa, Tomoko
Sands, Ronald D.
Brunelle, Thierry
Cui, Yiyun
Frank, Stefan
Fujimori, Shinichiro
Popp, Alexander
description Bioenergy is expected to play an important role in the achievement of stringent climate-change mitigation targets requiring the application of negative emissions technology. Using a multi-model framework, we assess the effects of high bioenergy demand on global food production, food security, and competition for agricultural land. Various scenarios simulate global bioenergy demands of 100, 200, 300, and 400 exajoules (EJ) by 2100, with and without a carbon price. Six global energy-economy-agriculture models contribute to this study, with different methodologies and technologies used for bioenergy supply and greenhouse-gas mitigation options for agriculture. We find that the large-scale use of bioenergy, if not implemented properly, would raise food prices and increase the number of people at risk of hunger in many areas of the world. For example, an increase in global bioenergy demand from 200 to 300 EJ causes a − 11% to + 40% change in food crop prices and decreases food consumption from − 45 to − 2 kcal person −1  day −1 , leading to an additional 0 to 25 million people at risk of hunger compared with the case of no bioenergy demand (90th percentile range across models). This risk does not rule out the intensive use of bioenergy but shows the importance of its careful implementation, potentially including regulations that protect cropland for food production or for the use of bioenergy feedstock on land that is not competitive with food production.
doi_str_mv 10.1007/s10584-020-02838-8
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1837666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473254051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-bd5bf8a7c9adec3b837ddc3b401e6d37e8e011ff91517740138a238c101e1a413</originalsourceid><addsrcrecordid>eNp9UMFKAzEQDaJgrf6Ap6DnaLLZ3WSPUqwVCl70HLLJ7HZLm9Qki_TvTV3Bm4fhDTPvPWYeQreMPjBKxWNktJIloQXNJbkk8gzNWCU4YaWk52hGWV0RSmlzia5i3J46UdQztFp6b3EEM4YhHfHoLAS8GfoNbgcPDkJ_xBb22lmc_JcOFu-860mCsMdmN-x1Atx7vYvX6KLLADe_OEcfy-f3xYqs315eF09rYnhDE2lt1XZSC9NoC4a3kgtrM5aUQW25AAmUsa5rWMWEyFMudcGlYXnPdMn4HN1Nvj6mQUUzJDAb450DkxTLdnVdZ9L9RDoE_zlCTGrrx-DyXaooBS-qklYnq2JimeBjDNCpQ8gfhaNiVJ1iVVOsKseqfmJVMov4JIqZ7HoIf9b_qL4BYQR51g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473254051</pqid></control><display><type>article</type><title>Food security under high bioenergy demand toward long-term climate goals</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Hasegawa, Tomoko ; Sands, Ronald D. ; Brunelle, Thierry ; Cui, Yiyun ; Frank, Stefan ; Fujimori, Shinichiro ; Popp, Alexander</creator><creatorcontrib>Hasegawa, Tomoko ; Sands, Ronald D. ; Brunelle, Thierry ; Cui, Yiyun ; Frank, Stefan ; Fujimori, Shinichiro ; Popp, Alexander ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Bioenergy is expected to play an important role in the achievement of stringent climate-change mitigation targets requiring the application of negative emissions technology. Using a multi-model framework, we assess the effects of high bioenergy demand on global food production, food security, and competition for agricultural land. Various scenarios simulate global bioenergy demands of 100, 200, 300, and 400 exajoules (EJ) by 2100, with and without a carbon price. Six global energy-economy-agriculture models contribute to this study, with different methodologies and technologies used for bioenergy supply and greenhouse-gas mitigation options for agriculture. We find that the large-scale use of bioenergy, if not implemented properly, would raise food prices and increase the number of people at risk of hunger in many areas of the world. For example, an increase in global bioenergy demand from 200 to 300 EJ causes a − 11% to + 40% change in food crop prices and decreases food consumption from − 45 to − 2 kcal person −1  day −1 , leading to an additional 0 to 25 million people at risk of hunger compared with the case of no bioenergy demand (90th percentile range across models). This risk does not rule out the intensive use of bioenergy but shows the importance of its careful implementation, potentially including regulations that protect cropland for food production or for the use of bioenergy feedstock on land that is not competitive with food production.</description><identifier>ISSN: 0165-0009</identifier><identifier>EISSN: 1573-1480</identifier><identifier>DOI: 10.1007/s10584-020-02838-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agricultural land ; Agriculture ; Agronomy ; Assessing Large-scale Global Bioenergy Deployment for Managing Climate Change (EMF-33) ; Atmospheric Sciences ; Bioenergy ; Climate ; Climate change ; Climate change mitigation ; Climate Change/Climate Change Impacts ; Earth and Environmental Science ; Earth Sciences ; ENVIRONMENTAL SCIENCES ; Food ; Food availability ; Food consumption ; Food production ; Food security ; Hunger ; Hunger (physiology) ; Integrated assessment model ; Mitigation ; Model comparison ; Renewable energy ; Risk</subject><ispartof>Climatic change, 2020-12, Vol.163 (3), p.1587-1601</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-bd5bf8a7c9adec3b837ddc3b401e6d37e8e011ff91517740138a238c101e1a413</citedby><cites>FETCH-LOGICAL-c390t-bd5bf8a7c9adec3b837ddc3b401e6d37e8e011ff91517740138a238c101e1a413</cites><orcidid>0000-0003-2456-5789 ; 0000000324565789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473254051/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473254051?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><backlink>$$Uhttps://www.osti.gov/servlets/purl/1837666$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasegawa, Tomoko</creatorcontrib><creatorcontrib>Sands, Ronald D.</creatorcontrib><creatorcontrib>Brunelle, Thierry</creatorcontrib><creatorcontrib>Cui, Yiyun</creatorcontrib><creatorcontrib>Frank, Stefan</creatorcontrib><creatorcontrib>Fujimori, Shinichiro</creatorcontrib><creatorcontrib>Popp, Alexander</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Food security under high bioenergy demand toward long-term climate goals</title><title>Climatic change</title><addtitle>Climatic Change</addtitle><description>Bioenergy is expected to play an important role in the achievement of stringent climate-change mitigation targets requiring the application of negative emissions technology. Using a multi-model framework, we assess the effects of high bioenergy demand on global food production, food security, and competition for agricultural land. Various scenarios simulate global bioenergy demands of 100, 200, 300, and 400 exajoules (EJ) by 2100, with and without a carbon price. Six global energy-economy-agriculture models contribute to this study, with different methodologies and technologies used for bioenergy supply and greenhouse-gas mitigation options for agriculture. We find that the large-scale use of bioenergy, if not implemented properly, would raise food prices and increase the number of people at risk of hunger in many areas of the world. For example, an increase in global bioenergy demand from 200 to 300 EJ causes a − 11% to + 40% change in food crop prices and decreases food consumption from − 45 to − 2 kcal person −1  day −1 , leading to an additional 0 to 25 million people at risk of hunger compared with the case of no bioenergy demand (90th percentile range across models). This risk does not rule out the intensive use of bioenergy but shows the importance of its careful implementation, potentially including regulations that protect cropland for food production or for the use of bioenergy feedstock on land that is not competitive with food production.</description><subject>Agricultural land</subject><subject>Agriculture</subject><subject>Agronomy</subject><subject>Assessing Large-scale Global Bioenergy Deployment for Managing Climate Change (EMF-33)</subject><subject>Atmospheric Sciences</subject><subject>Bioenergy</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Food</subject><subject>Food availability</subject><subject>Food consumption</subject><subject>Food production</subject><subject>Food security</subject><subject>Hunger</subject><subject>Hunger (physiology)</subject><subject>Integrated assessment model</subject><subject>Mitigation</subject><subject>Model comparison</subject><subject>Renewable energy</subject><subject>Risk</subject><issn>0165-0009</issn><issn>1573-1480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9UMFKAzEQDaJgrf6Ap6DnaLLZ3WSPUqwVCl70HLLJ7HZLm9Qki_TvTV3Bm4fhDTPvPWYeQreMPjBKxWNktJIloQXNJbkk8gzNWCU4YaWk52hGWV0RSmlzia5i3J46UdQztFp6b3EEM4YhHfHoLAS8GfoNbgcPDkJ_xBb22lmc_JcOFu-860mCsMdmN-x1Atx7vYvX6KLLADe_OEcfy-f3xYqs315eF09rYnhDE2lt1XZSC9NoC4a3kgtrM5aUQW25AAmUsa5rWMWEyFMudcGlYXnPdMn4HN1Nvj6mQUUzJDAb450DkxTLdnVdZ9L9RDoE_zlCTGrrx-DyXaooBS-qklYnq2JimeBjDNCpQ8gfhaNiVJ1iVVOsKseqfmJVMov4JIqZ7HoIf9b_qL4BYQR51g</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hasegawa, Tomoko</creator><creator>Sands, Ronald D.</creator><creator>Brunelle, Thierry</creator><creator>Cui, Yiyun</creator><creator>Frank, Stefan</creator><creator>Fujimori, Shinichiro</creator><creator>Popp, Alexander</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2456-5789</orcidid><orcidid>https://orcid.org/0000000324565789</orcidid></search><sort><creationdate>20201201</creationdate><title>Food security under high bioenergy demand toward long-term climate goals</title><author>Hasegawa, Tomoko ; Sands, Ronald D. ; Brunelle, Thierry ; Cui, Yiyun ; Frank, Stefan ; Fujimori, Shinichiro ; Popp, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-bd5bf8a7c9adec3b837ddc3b401e6d37e8e011ff91517740138a238c101e1a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural land</topic><topic>Agriculture</topic><topic>Agronomy</topic><topic>Assessing Large-scale Global Bioenergy Deployment for Managing Climate Change (EMF-33)</topic><topic>Atmospheric Sciences</topic><topic>Bioenergy</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Food</topic><topic>Food availability</topic><topic>Food consumption</topic><topic>Food production</topic><topic>Food security</topic><topic>Hunger</topic><topic>Hunger (physiology)</topic><topic>Integrated assessment model</topic><topic>Mitigation</topic><topic>Model comparison</topic><topic>Renewable energy</topic><topic>Risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasegawa, Tomoko</creatorcontrib><creatorcontrib>Sands, Ronald D.</creatorcontrib><creatorcontrib>Brunelle, Thierry</creatorcontrib><creatorcontrib>Cui, Yiyun</creatorcontrib><creatorcontrib>Frank, Stefan</creatorcontrib><creatorcontrib>Fujimori, Shinichiro</creatorcontrib><creatorcontrib>Popp, Alexander</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni)</collection><collection>Research Library</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection (via ProQuest)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business (UW System Shared)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Climatic change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasegawa, Tomoko</au><au>Sands, Ronald D.</au><au>Brunelle, Thierry</au><au>Cui, Yiyun</au><au>Frank, Stefan</au><au>Fujimori, Shinichiro</au><au>Popp, Alexander</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Food security under high bioenergy demand toward long-term climate goals</atitle><jtitle>Climatic change</jtitle><stitle>Climatic Change</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>163</volume><issue>3</issue><spage>1587</spage><epage>1601</epage><pages>1587-1601</pages><issn>0165-0009</issn><eissn>1573-1480</eissn><abstract>Bioenergy is expected to play an important role in the achievement of stringent climate-change mitigation targets requiring the application of negative emissions technology. Using a multi-model framework, we assess the effects of high bioenergy demand on global food production, food security, and competition for agricultural land. Various scenarios simulate global bioenergy demands of 100, 200, 300, and 400 exajoules (EJ) by 2100, with and without a carbon price. Six global energy-economy-agriculture models contribute to this study, with different methodologies and technologies used for bioenergy supply and greenhouse-gas mitigation options for agriculture. We find that the large-scale use of bioenergy, if not implemented properly, would raise food prices and increase the number of people at risk of hunger in many areas of the world. For example, an increase in global bioenergy demand from 200 to 300 EJ causes a − 11% to + 40% change in food crop prices and decreases food consumption from − 45 to − 2 kcal person −1  day −1 , leading to an additional 0 to 25 million people at risk of hunger compared with the case of no bioenergy demand (90th percentile range across models). This risk does not rule out the intensive use of bioenergy but shows the importance of its careful implementation, potentially including regulations that protect cropland for food production or for the use of bioenergy feedstock on land that is not competitive with food production.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10584-020-02838-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2456-5789</orcidid><orcidid>https://orcid.org/0000000324565789</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0009
ispartof Climatic change, 2020-12, Vol.163 (3), p.1587-1601
issn 0165-0009
1573-1480
language eng
recordid cdi_osti_scitechconnect_1837666
source ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Agricultural land
Agriculture
Agronomy
Assessing Large-scale Global Bioenergy Deployment for Managing Climate Change (EMF-33)
Atmospheric Sciences
Bioenergy
Climate
Climate change
Climate change mitigation
Climate Change/Climate Change Impacts
Earth and Environmental Science
Earth Sciences
ENVIRONMENTAL SCIENCES
Food
Food availability
Food consumption
Food production
Food security
Hunger
Hunger (physiology)
Integrated assessment model
Mitigation
Model comparison
Renewable energy
Risk
title Food security under high bioenergy demand toward long-term climate goals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-07T07%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Food%20security%20under%20high%20bioenergy%20demand%20toward%20long-term%20climate%20goals&rft.jtitle=Climatic%20change&rft.au=Hasegawa,%20Tomoko&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-12-01&rft.volume=163&rft.issue=3&rft.spage=1587&rft.epage=1601&rft.pages=1587-1601&rft.issn=0165-0009&rft.eissn=1573-1480&rft_id=info:doi/10.1007/s10584-020-02838-8&rft_dat=%3Cproquest_osti_%3E2473254051%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-bd5bf8a7c9adec3b837ddc3b401e6d37e8e011ff91517740138a238c101e1a413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473254051&rft_id=info:pmid/&rfr_iscdi=true