Loading…
Dynamic Barriers to Crystallization of Calcium Barium Carbonates
Metastable carbonates play important roles in geochemistry, biomineralization and serve as model systems for nonclassical theories of nucleation and growth. Balcite (Ca0.5Ba0.5CO3) is a remarkable carbonate phase that is isostructural with a high-temperature modification of calcite (CaCO3), yet can...
Saved in:
Published in: | Crystal growth & design 2021-08, Vol.21 (8), p.4556-4563 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623 |
---|---|
cites | cdi_FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623 |
container_end_page | 4563 |
container_issue | 8 |
container_start_page | 4556 |
container_title | Crystal growth & design |
container_volume | 21 |
creator | Whittaker, Michael L Sun, Wenhao Duggins, Danielle O Ceder, Gerbrand Joester, Derk |
description | Metastable carbonates play important roles in geochemistry, biomineralization and serve as model systems for nonclassical theories of nucleation and growth. Balcite (Ca0.5Ba0.5CO3) is a remarkable carbonate phase that is isostructural with a high-temperature modification of calcite (CaCO3), yet can be synthesized at ambient conditions. Here, we investigate crystallization pathways in the Ba–Ca–CO3–H2O system, with a focus on the transformation of amorphous calcium barium carbonate (ACBC) to balcite and subsequent decomposition into the equilibrium calcite (CaCO3) and witherite (BaCO3) phases. Density functional theory calculations show that balcite is an unstable solid solution (Ca1–x Ba x CO3, R3̅m) in the range 0.17 < x < 0.5, but is accessible through the amorphous ACBC precursor for x ≲ 0.5, and predict its decomposition into calcite and witherite. We confirm this pathway experimentally but found demixing to proceed slowly and remain incomplete even after 9 months. Nucleation kinetics of balcite from ACBC was assessed using a microfluidic assay, where increasing barium content led to a surprising increase in the balcite nucleation rate, despite decreasing thermodynamic driving force. We attribute crystallization rates that dramatically accelerate with time to changes in interfacial structure and composition during coarsening of the amorphous precipitate. By carefully quantifying the thermodynamic and kinetic contributions in the multistep crystallization of a metastable carbonate, we produce insights that allow us to better interpret the formation and persistence of metastable minerals in natural and synthetic environments. |
doi_str_mv | 10.1021/acs.cgd.1c00433 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1839260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b30410136</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUws0asKMWO7TjZgPApVWKB2bqeHXCVxsh2h_LrcdQyMt1J97ynu4eQS0YXjFbsBjAu8NMsGFIqOD8iMyarplSSyuO_XjT8lJzFuKaUqprzGbl92I2wcVjcQwjOhlgkX3RhFxMMg_uB5PxY-L7oYEC33UzYVDoIKz9CsvGcnPQwRHtxqHPy8fT43r2Uy7fn1-5uWQIXMpUAwpgG2kbSWihh25ozMLxH07a0RbHClem5qlXFmDKKgQTMTCvzncbUFZ-Tq_1eH5PTEV2y-IV-HC0mzRreVjXN0M0ewuBjDLbX38FtIOw0o3qypLMlnS3pg6WcuN4npsHab8OYn_iX_gW-iWmp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Barriers to Crystallization of Calcium Barium Carbonates</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Whittaker, Michael L ; Sun, Wenhao ; Duggins, Danielle O ; Ceder, Gerbrand ; Joester, Derk</creator><creatorcontrib>Whittaker, Michael L ; Sun, Wenhao ; Duggins, Danielle O ; Ceder, Gerbrand ; Joester, Derk ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Metastable carbonates play important roles in geochemistry, biomineralization and serve as model systems for nonclassical theories of nucleation and growth. Balcite (Ca0.5Ba0.5CO3) is a remarkable carbonate phase that is isostructural with a high-temperature modification of calcite (CaCO3), yet can be synthesized at ambient conditions. Here, we investigate crystallization pathways in the Ba–Ca–CO3–H2O system, with a focus on the transformation of amorphous calcium barium carbonate (ACBC) to balcite and subsequent decomposition into the equilibrium calcite (CaCO3) and witherite (BaCO3) phases. Density functional theory calculations show that balcite is an unstable solid solution (Ca1–x Ba x CO3, R3̅m) in the range 0.17 < x < 0.5, but is accessible through the amorphous ACBC precursor for x ≲ 0.5, and predict its decomposition into calcite and witherite. We confirm this pathway experimentally but found demixing to proceed slowly and remain incomplete even after 9 months. Nucleation kinetics of balcite from ACBC was assessed using a microfluidic assay, where increasing barium content led to a surprising increase in the balcite nucleation rate, despite decreasing thermodynamic driving force. We attribute crystallization rates that dramatically accelerate with time to changes in interfacial structure and composition during coarsening of the amorphous precipitate. By carefully quantifying the thermodynamic and kinetic contributions in the multistep crystallization of a metastable carbonate, we produce insights that allow us to better interpret the formation and persistence of metastable minerals in natural and synthetic environments.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.1c00433</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Barium ; Calcite ; Inorganic carbon compounds ; Liquids ; MATERIALS SCIENCE ; Nucleation</subject><ispartof>Crystal growth & design, 2021-08, Vol.21 (8), p.4556-4563</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623</citedby><cites>FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623</cites><orcidid>0000-0002-9663-3309 ; 0000-0002-9724-3409 ; 0000-0001-9275-3605 ; 0000000192753605 ; 0000000297243409 ; 0000000296633309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1839260$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Whittaker, Michael L</creatorcontrib><creatorcontrib>Sun, Wenhao</creatorcontrib><creatorcontrib>Duggins, Danielle O</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Joester, Derk</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Dynamic Barriers to Crystallization of Calcium Barium Carbonates</title><title>Crystal growth & design</title><addtitle>Cryst. Growth Des</addtitle><description>Metastable carbonates play important roles in geochemistry, biomineralization and serve as model systems for nonclassical theories of nucleation and growth. Balcite (Ca0.5Ba0.5CO3) is a remarkable carbonate phase that is isostructural with a high-temperature modification of calcite (CaCO3), yet can be synthesized at ambient conditions. Here, we investigate crystallization pathways in the Ba–Ca–CO3–H2O system, with a focus on the transformation of amorphous calcium barium carbonate (ACBC) to balcite and subsequent decomposition into the equilibrium calcite (CaCO3) and witherite (BaCO3) phases. Density functional theory calculations show that balcite is an unstable solid solution (Ca1–x Ba x CO3, R3̅m) in the range 0.17 < x < 0.5, but is accessible through the amorphous ACBC precursor for x ≲ 0.5, and predict its decomposition into calcite and witherite. We confirm this pathway experimentally but found demixing to proceed slowly and remain incomplete even after 9 months. Nucleation kinetics of balcite from ACBC was assessed using a microfluidic assay, where increasing barium content led to a surprising increase in the balcite nucleation rate, despite decreasing thermodynamic driving force. We attribute crystallization rates that dramatically accelerate with time to changes in interfacial structure and composition during coarsening of the amorphous precipitate. By carefully quantifying the thermodynamic and kinetic contributions in the multistep crystallization of a metastable carbonate, we produce insights that allow us to better interpret the formation and persistence of metastable minerals in natural and synthetic environments.</description><subject>Barium</subject><subject>Calcite</subject><subject>Inorganic carbon compounds</subject><subject>Liquids</subject><subject>MATERIALS SCIENCE</subject><subject>Nucleation</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUws0asKMWO7TjZgPApVWKB2bqeHXCVxsh2h_LrcdQyMt1J97ynu4eQS0YXjFbsBjAu8NMsGFIqOD8iMyarplSSyuO_XjT8lJzFuKaUqprzGbl92I2wcVjcQwjOhlgkX3RhFxMMg_uB5PxY-L7oYEC33UzYVDoIKz9CsvGcnPQwRHtxqHPy8fT43r2Uy7fn1-5uWQIXMpUAwpgG2kbSWihh25ozMLxH07a0RbHClem5qlXFmDKKgQTMTCvzncbUFZ-Tq_1eH5PTEV2y-IV-HC0mzRreVjXN0M0ewuBjDLbX38FtIOw0o3qypLMlnS3pg6WcuN4npsHab8OYn_iX_gW-iWmp</recordid><startdate>20210804</startdate><enddate>20210804</enddate><creator>Whittaker, Michael L</creator><creator>Sun, Wenhao</creator><creator>Duggins, Danielle O</creator><creator>Ceder, Gerbrand</creator><creator>Joester, Derk</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9663-3309</orcidid><orcidid>https://orcid.org/0000-0002-9724-3409</orcidid><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0000000297243409</orcidid><orcidid>https://orcid.org/0000000296633309</orcidid></search><sort><creationdate>20210804</creationdate><title>Dynamic Barriers to Crystallization of Calcium Barium Carbonates</title><author>Whittaker, Michael L ; Sun, Wenhao ; Duggins, Danielle O ; Ceder, Gerbrand ; Joester, Derk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barium</topic><topic>Calcite</topic><topic>Inorganic carbon compounds</topic><topic>Liquids</topic><topic>MATERIALS SCIENCE</topic><topic>Nucleation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whittaker, Michael L</creatorcontrib><creatorcontrib>Sun, Wenhao</creatorcontrib><creatorcontrib>Duggins, Danielle O</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Joester, Derk</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Crystal growth & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whittaker, Michael L</au><au>Sun, Wenhao</au><au>Duggins, Danielle O</au><au>Ceder, Gerbrand</au><au>Joester, Derk</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Barriers to Crystallization of Calcium Barium Carbonates</atitle><jtitle>Crystal growth & design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2021-08-04</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>4556</spage><epage>4563</epage><pages>4556-4563</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>Metastable carbonates play important roles in geochemistry, biomineralization and serve as model systems for nonclassical theories of nucleation and growth. Balcite (Ca0.5Ba0.5CO3) is a remarkable carbonate phase that is isostructural with a high-temperature modification of calcite (CaCO3), yet can be synthesized at ambient conditions. Here, we investigate crystallization pathways in the Ba–Ca–CO3–H2O system, with a focus on the transformation of amorphous calcium barium carbonate (ACBC) to balcite and subsequent decomposition into the equilibrium calcite (CaCO3) and witherite (BaCO3) phases. Density functional theory calculations show that balcite is an unstable solid solution (Ca1–x Ba x CO3, R3̅m) in the range 0.17 < x < 0.5, but is accessible through the amorphous ACBC precursor for x ≲ 0.5, and predict its decomposition into calcite and witherite. We confirm this pathway experimentally but found demixing to proceed slowly and remain incomplete even after 9 months. Nucleation kinetics of balcite from ACBC was assessed using a microfluidic assay, where increasing barium content led to a surprising increase in the balcite nucleation rate, despite decreasing thermodynamic driving force. We attribute crystallization rates that dramatically accelerate with time to changes in interfacial structure and composition during coarsening of the amorphous precipitate. By carefully quantifying the thermodynamic and kinetic contributions in the multistep crystallization of a metastable carbonate, we produce insights that allow us to better interpret the formation and persistence of metastable minerals in natural and synthetic environments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.1c00433</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9663-3309</orcidid><orcidid>https://orcid.org/0000-0002-9724-3409</orcidid><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0000000297243409</orcidid><orcidid>https://orcid.org/0000000296633309</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-7483 |
ispartof | Crystal growth & design, 2021-08, Vol.21 (8), p.4556-4563 |
issn | 1528-7483 1528-7505 |
language | eng |
recordid | cdi_osti_scitechconnect_1839260 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Barium Calcite Inorganic carbon compounds Liquids MATERIALS SCIENCE Nucleation |
title | Dynamic Barriers to Crystallization of Calcium Barium Carbonates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Barriers%20to%20Crystallization%20of%20Calcium%20Barium%20Carbonates&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Whittaker,%20Michael%20L&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-08-04&rft.volume=21&rft.issue=8&rft.spage=4556&rft.epage=4563&rft.pages=4556-4563&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.1c00433&rft_dat=%3Cacs_osti_%3Eb30410136%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |