Loading…

Dynamic Barriers to Crystallization of Calcium Barium Carbonates

Metastable carbonates play important roles in geochemistry, biomineralization and serve as model systems for nonclassical theories of nucleation and growth. Balcite (Ca0.5Ba0.5CO3) is a remarkable carbonate phase that is isostructural with a high-temperature modification of calcite (CaCO3), yet can...

Full description

Saved in:
Bibliographic Details
Published in:Crystal growth & design 2021-08, Vol.21 (8), p.4556-4563
Main Authors: Whittaker, Michael L, Sun, Wenhao, Duggins, Danielle O, Ceder, Gerbrand, Joester, Derk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623
cites cdi_FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623
container_end_page 4563
container_issue 8
container_start_page 4556
container_title Crystal growth & design
container_volume 21
creator Whittaker, Michael L
Sun, Wenhao
Duggins, Danielle O
Ceder, Gerbrand
Joester, Derk
description Metastable carbonates play important roles in geochemistry, biomineralization and serve as model systems for nonclassical theories of nucleation and growth. Balcite (Ca0.5Ba0.5CO3) is a remarkable carbonate phase that is isostructural with a high-temperature modification of calcite (CaCO3), yet can be synthesized at ambient conditions. Here, we investigate crystallization pathways in the Ba–Ca–CO3–H2O system, with a focus on the transformation of amorphous calcium barium carbonate (ACBC) to balcite and subsequent decomposition into the equilibrium calcite (CaCO3) and witherite (BaCO3) phases. Density functional theory calculations show that balcite is an unstable solid solution (Ca1–x Ba x CO3, R3̅m) in the range 0.17 < x < 0.5, but is accessible through the amorphous ACBC precursor for x ≲ 0.5, and predict its decomposition into calcite and witherite. We confirm this pathway experimentally but found demixing to proceed slowly and remain incomplete even after 9 months. Nucleation kinetics of balcite from ACBC was assessed using a microfluidic assay, where increasing barium content led to a surprising increase in the balcite nucleation rate, despite decreasing thermodynamic driving force. We attribute crystallization rates that dramatically accelerate with time to changes in interfacial structure and composition during coarsening of the amorphous precipitate. By carefully quantifying the thermodynamic and kinetic contributions in the multistep crystallization of a metastable carbonate, we produce insights that allow us to better interpret the formation and persistence of metastable minerals in natural and synthetic environments.
doi_str_mv 10.1021/acs.cgd.1c00433
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1839260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b30410136</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUws0asKMWO7TjZgPApVWKB2bqeHXCVxsh2h_LrcdQyMt1J97ynu4eQS0YXjFbsBjAu8NMsGFIqOD8iMyarplSSyuO_XjT8lJzFuKaUqprzGbl92I2wcVjcQwjOhlgkX3RhFxMMg_uB5PxY-L7oYEC33UzYVDoIKz9CsvGcnPQwRHtxqHPy8fT43r2Uy7fn1-5uWQIXMpUAwpgG2kbSWihh25ozMLxH07a0RbHClem5qlXFmDKKgQTMTCvzncbUFZ-Tq_1eH5PTEV2y-IV-HC0mzRreVjXN0M0ewuBjDLbX38FtIOw0o3qypLMlnS3pg6WcuN4npsHab8OYn_iX_gW-iWmp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Barriers to Crystallization of Calcium Barium Carbonates</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Whittaker, Michael L ; Sun, Wenhao ; Duggins, Danielle O ; Ceder, Gerbrand ; Joester, Derk</creator><creatorcontrib>Whittaker, Michael L ; Sun, Wenhao ; Duggins, Danielle O ; Ceder, Gerbrand ; Joester, Derk ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Metastable carbonates play important roles in geochemistry, biomineralization and serve as model systems for nonclassical theories of nucleation and growth. Balcite (Ca0.5Ba0.5CO3) is a remarkable carbonate phase that is isostructural with a high-temperature modification of calcite (CaCO3), yet can be synthesized at ambient conditions. Here, we investigate crystallization pathways in the Ba–Ca–CO3–H2O system, with a focus on the transformation of amorphous calcium barium carbonate (ACBC) to balcite and subsequent decomposition into the equilibrium calcite (CaCO3) and witherite (BaCO3) phases. Density functional theory calculations show that balcite is an unstable solid solution (Ca1–x Ba x CO3, R3̅m) in the range 0.17 &lt; x &lt; 0.5, but is accessible through the amorphous ACBC precursor for x ≲ 0.5, and predict its decomposition into calcite and witherite. We confirm this pathway experimentally but found demixing to proceed slowly and remain incomplete even after 9 months. Nucleation kinetics of balcite from ACBC was assessed using a microfluidic assay, where increasing barium content led to a surprising increase in the balcite nucleation rate, despite decreasing thermodynamic driving force. We attribute crystallization rates that dramatically accelerate with time to changes in interfacial structure and composition during coarsening of the amorphous precipitate. By carefully quantifying the thermodynamic and kinetic contributions in the multistep crystallization of a metastable carbonate, we produce insights that allow us to better interpret the formation and persistence of metastable minerals in natural and synthetic environments.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.1c00433</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Barium ; Calcite ; Inorganic carbon compounds ; Liquids ; MATERIALS SCIENCE ; Nucleation</subject><ispartof>Crystal growth &amp; design, 2021-08, Vol.21 (8), p.4556-4563</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623</citedby><cites>FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623</cites><orcidid>0000-0002-9663-3309 ; 0000-0002-9724-3409 ; 0000-0001-9275-3605 ; 0000000192753605 ; 0000000297243409 ; 0000000296633309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1839260$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Whittaker, Michael L</creatorcontrib><creatorcontrib>Sun, Wenhao</creatorcontrib><creatorcontrib>Duggins, Danielle O</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Joester, Derk</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Dynamic Barriers to Crystallization of Calcium Barium Carbonates</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>Metastable carbonates play important roles in geochemistry, biomineralization and serve as model systems for nonclassical theories of nucleation and growth. Balcite (Ca0.5Ba0.5CO3) is a remarkable carbonate phase that is isostructural with a high-temperature modification of calcite (CaCO3), yet can be synthesized at ambient conditions. Here, we investigate crystallization pathways in the Ba–Ca–CO3–H2O system, with a focus on the transformation of amorphous calcium barium carbonate (ACBC) to balcite and subsequent decomposition into the equilibrium calcite (CaCO3) and witherite (BaCO3) phases. Density functional theory calculations show that balcite is an unstable solid solution (Ca1–x Ba x CO3, R3̅m) in the range 0.17 &lt; x &lt; 0.5, but is accessible through the amorphous ACBC precursor for x ≲ 0.5, and predict its decomposition into calcite and witherite. We confirm this pathway experimentally but found demixing to proceed slowly and remain incomplete even after 9 months. Nucleation kinetics of balcite from ACBC was assessed using a microfluidic assay, where increasing barium content led to a surprising increase in the balcite nucleation rate, despite decreasing thermodynamic driving force. We attribute crystallization rates that dramatically accelerate with time to changes in interfacial structure and composition during coarsening of the amorphous precipitate. By carefully quantifying the thermodynamic and kinetic contributions in the multistep crystallization of a metastable carbonate, we produce insights that allow us to better interpret the formation and persistence of metastable minerals in natural and synthetic environments.</description><subject>Barium</subject><subject>Calcite</subject><subject>Inorganic carbon compounds</subject><subject>Liquids</subject><subject>MATERIALS SCIENCE</subject><subject>Nucleation</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUws0asKMWO7TjZgPApVWKB2bqeHXCVxsh2h_LrcdQyMt1J97ynu4eQS0YXjFbsBjAu8NMsGFIqOD8iMyarplSSyuO_XjT8lJzFuKaUqprzGbl92I2wcVjcQwjOhlgkX3RhFxMMg_uB5PxY-L7oYEC33UzYVDoIKz9CsvGcnPQwRHtxqHPy8fT43r2Uy7fn1-5uWQIXMpUAwpgG2kbSWihh25ozMLxH07a0RbHClem5qlXFmDKKgQTMTCvzncbUFZ-Tq_1eH5PTEV2y-IV-HC0mzRreVjXN0M0ewuBjDLbX38FtIOw0o3qypLMlnS3pg6WcuN4npsHab8OYn_iX_gW-iWmp</recordid><startdate>20210804</startdate><enddate>20210804</enddate><creator>Whittaker, Michael L</creator><creator>Sun, Wenhao</creator><creator>Duggins, Danielle O</creator><creator>Ceder, Gerbrand</creator><creator>Joester, Derk</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9663-3309</orcidid><orcidid>https://orcid.org/0000-0002-9724-3409</orcidid><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0000000297243409</orcidid><orcidid>https://orcid.org/0000000296633309</orcidid></search><sort><creationdate>20210804</creationdate><title>Dynamic Barriers to Crystallization of Calcium Barium Carbonates</title><author>Whittaker, Michael L ; Sun, Wenhao ; Duggins, Danielle O ; Ceder, Gerbrand ; Joester, Derk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barium</topic><topic>Calcite</topic><topic>Inorganic carbon compounds</topic><topic>Liquids</topic><topic>MATERIALS SCIENCE</topic><topic>Nucleation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whittaker, Michael L</creatorcontrib><creatorcontrib>Sun, Wenhao</creatorcontrib><creatorcontrib>Duggins, Danielle O</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Joester, Derk</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whittaker, Michael L</au><au>Sun, Wenhao</au><au>Duggins, Danielle O</au><au>Ceder, Gerbrand</au><au>Joester, Derk</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Barriers to Crystallization of Calcium Barium Carbonates</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2021-08-04</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>4556</spage><epage>4563</epage><pages>4556-4563</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>Metastable carbonates play important roles in geochemistry, biomineralization and serve as model systems for nonclassical theories of nucleation and growth. Balcite (Ca0.5Ba0.5CO3) is a remarkable carbonate phase that is isostructural with a high-temperature modification of calcite (CaCO3), yet can be synthesized at ambient conditions. Here, we investigate crystallization pathways in the Ba–Ca–CO3–H2O system, with a focus on the transformation of amorphous calcium barium carbonate (ACBC) to balcite and subsequent decomposition into the equilibrium calcite (CaCO3) and witherite (BaCO3) phases. Density functional theory calculations show that balcite is an unstable solid solution (Ca1–x Ba x CO3, R3̅m) in the range 0.17 &lt; x &lt; 0.5, but is accessible through the amorphous ACBC precursor for x ≲ 0.5, and predict its decomposition into calcite and witherite. We confirm this pathway experimentally but found demixing to proceed slowly and remain incomplete even after 9 months. Nucleation kinetics of balcite from ACBC was assessed using a microfluidic assay, where increasing barium content led to a surprising increase in the balcite nucleation rate, despite decreasing thermodynamic driving force. We attribute crystallization rates that dramatically accelerate with time to changes in interfacial structure and composition during coarsening of the amorphous precipitate. By carefully quantifying the thermodynamic and kinetic contributions in the multistep crystallization of a metastable carbonate, we produce insights that allow us to better interpret the formation and persistence of metastable minerals in natural and synthetic environments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.1c00433</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9663-3309</orcidid><orcidid>https://orcid.org/0000-0002-9724-3409</orcidid><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0000000297243409</orcidid><orcidid>https://orcid.org/0000000296633309</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2021-08, Vol.21 (8), p.4556-4563
issn 1528-7483
1528-7505
language eng
recordid cdi_osti_scitechconnect_1839260
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Barium
Calcite
Inorganic carbon compounds
Liquids
MATERIALS SCIENCE
Nucleation
title Dynamic Barriers to Crystallization of Calcium Barium Carbonates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Barriers%20to%20Crystallization%20of%20Calcium%20Barium%20Carbonates&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Whittaker,%20Michael%20L&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-08-04&rft.volume=21&rft.issue=8&rft.spage=4556&rft.epage=4563&rft.pages=4556-4563&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.1c00433&rft_dat=%3Cacs_osti_%3Eb30410136%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a345t-aa4dd8a98506474e9631ad3fcd9909c4bcbdf37672117d71a5ac96395076dd623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true