Loading…
Addressing Interdependency in a Multimodel Ensemble by Interpolation of Model Properties
The diverse set of Earth system models used to conduct the CMIP5 ensemble can partly sample the uncertainties in future climate projections. However, combining those projections is complicated by the fact that models developed by different groups share ideas and code and therefore biases. The author...
Saved in:
Published in: | Journal of climate 2015-07, Vol.28 (13), p.5150-5170 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The diverse set of Earth system models used to conduct the CMIP5 ensemble can partly sample the uncertainties in future climate projections. However, combining those projections is complicated by the fact that models developed by different groups share ideas and code and therefore biases. The authors propose a method for combining model results into single or multivariate distributions that are more robust to the inclusion of models with a large degree of interdependency. This study uses a multivariate metric of present-day climatology to assess both model performance and similarity in two recent model intercomparisons, CMIP3 and CMIP5. Model characteristics can be interpolated and then resampled in a space defined by independent climate properties. A form of weighting can be applied by sampling more densely in the region of the space close to the projected observations, thus taking into account both model performance and interdependence. The choice of the sampling distribution’s parameters is a subjective decision that should reflect the researcher’s prior assumptions as to the acceptability of different model errors. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/jcli-d-14-00361.1 |