Loading…
A method for predicting failure statistics for steady state elevated temperature structural components
This paper presents the initial development of a high temperature life prediction method that accounts for the variability in the material properties of Grade 91 steel. The method accounts for material variability by fitting a variable 3-parameter Weibull distribution to experimental rupture data an...
Saved in:
Published in: | The International journal of pressure vessels and piping 2021-08, Vol.192, p.104363, Article 104363 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-9b23b35e9068b07b2f402cec3967e40517532d54328ce09eebab462df7b8ea473 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-9b23b35e9068b07b2f402cec3967e40517532d54328ce09eebab462df7b8ea473 |
container_end_page | |
container_issue | |
container_start_page | 104363 |
container_title | The International journal of pressure vessels and piping |
container_volume | 192 |
creator | Nicolas, Andrea Messner, Mark C. Sham, T.-L. |
description | This paper presents the initial development of a high temperature life prediction method that accounts for the variability in the material properties of Grade 91 steel. The method accounts for material variability by fitting a variable 3-parameter Weibull distribution to experimental rupture data and accounts for the variability of creep deformation on the steady-state stresses via a Monte Carlo approach. To ensure reasonable computational times, the model represents the material as an extremely viscous Stokes fluid with a non-Newtonian viscosity, therefore solving the stress relaxation problem with a steady, static, instead of transient, analysis. The complete statistical analysis combines this model for creep deformation with a probabilistic model for creep rupture to evaluate the probability of premature failure for a set of sample problems, comparing the predicted failure statistics to the design life predicted by the ASME Boiler and Pressure Vessel Code rules.
•Steady-state creep was modeled using Stokes flow with non-Newtonian viscosity.•A probabilistic model for rupture was developed to account for material variability.•The probabilistic model enables a comprehensive assessment of rupture life. |
doi_str_mv | 10.1016/j.ijpvp.2021.104363 |
format | article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1840589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308016121000612</els_id><sourcerecordid>S0308016121000612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-9b23b35e9068b07b2f402cec3967e40517532d54328ce09eebab462df7b8ea473</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AjfBfcc82qZduBgGXzDgRtchSW-dlLYpSWbAf286de3qXC7nHA4fQveUbCih5WO3sd10mjaMMJo-OS_5BVrRStQZL3J6iVaEkypLVnqNbkLoCKGCFOUKtVs8QDy4BrfO48lDY0204zdule2PHnCIKtoQrQlnR4igmp_zFzD0cEra4AjDBF7FJeCPJl2qx8YNkxthjOEWXbWqD3D3p2v09fL8uXvL9h-v77vtPjNcFDGrNeOaF1CTstJEaNbmhBkwvC4F5KSgouCsKXLOKgOkBtBK5yVrWqErULnga_Sw9Lo0WQZjI5iDceMIJkpapYqqTia-mIx3IXho5eTtoPyPpETOPGUnzzzlzFMuPFPqaUlB2n-y4Od6GE0i5uf2xtl_87_gXIGj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A method for predicting failure statistics for steady state elevated temperature structural components</title><source>ScienceDirect Journals</source><creator>Nicolas, Andrea ; Messner, Mark C. ; Sham, T.-L.</creator><creatorcontrib>Nicolas, Andrea ; Messner, Mark C. ; Sham, T.-L. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>This paper presents the initial development of a high temperature life prediction method that accounts for the variability in the material properties of Grade 91 steel. The method accounts for material variability by fitting a variable 3-parameter Weibull distribution to experimental rupture data and accounts for the variability of creep deformation on the steady-state stresses via a Monte Carlo approach. To ensure reasonable computational times, the model represents the material as an extremely viscous Stokes fluid with a non-Newtonian viscosity, therefore solving the stress relaxation problem with a steady, static, instead of transient, analysis. The complete statistical analysis combines this model for creep deformation with a probabilistic model for creep rupture to evaluate the probability of premature failure for a set of sample problems, comparing the predicted failure statistics to the design life predicted by the ASME Boiler and Pressure Vessel Code rules.
•Steady-state creep was modeled using Stokes flow with non-Newtonian viscosity.•A probabilistic model for rupture was developed to account for material variability.•The probabilistic model enables a comprehensive assessment of rupture life.</description><identifier>ISSN: 0308-0161</identifier><identifier>EISSN: 1879-3541</identifier><identifier>DOI: 10.1016/j.ijpvp.2021.104363</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Creep life prediction ; ENGINEERING ; Gaussian process fitting ; Grade 91 Steel ; Monte Carlo method ; Non-Newtonian Stokes flow ; Weibull Distribution</subject><ispartof>The International journal of pressure vessels and piping, 2021-08, Vol.192, p.104363, Article 104363</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-9b23b35e9068b07b2f402cec3967e40517532d54328ce09eebab462df7b8ea473</citedby><cites>FETCH-LOGICAL-c375t-9b23b35e9068b07b2f402cec3967e40517532d54328ce09eebab462df7b8ea473</cites><orcidid>0000-0002-4657-2317 ; 0000000246572317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1840589$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicolas, Andrea</creatorcontrib><creatorcontrib>Messner, Mark C.</creatorcontrib><creatorcontrib>Sham, T.-L.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>A method for predicting failure statistics for steady state elevated temperature structural components</title><title>The International journal of pressure vessels and piping</title><description>This paper presents the initial development of a high temperature life prediction method that accounts for the variability in the material properties of Grade 91 steel. The method accounts for material variability by fitting a variable 3-parameter Weibull distribution to experimental rupture data and accounts for the variability of creep deformation on the steady-state stresses via a Monte Carlo approach. To ensure reasonable computational times, the model represents the material as an extremely viscous Stokes fluid with a non-Newtonian viscosity, therefore solving the stress relaxation problem with a steady, static, instead of transient, analysis. The complete statistical analysis combines this model for creep deformation with a probabilistic model for creep rupture to evaluate the probability of premature failure for a set of sample problems, comparing the predicted failure statistics to the design life predicted by the ASME Boiler and Pressure Vessel Code rules.
•Steady-state creep was modeled using Stokes flow with non-Newtonian viscosity.•A probabilistic model for rupture was developed to account for material variability.•The probabilistic model enables a comprehensive assessment of rupture life.</description><subject>Creep life prediction</subject><subject>ENGINEERING</subject><subject>Gaussian process fitting</subject><subject>Grade 91 Steel</subject><subject>Monte Carlo method</subject><subject>Non-Newtonian Stokes flow</subject><subject>Weibull Distribution</subject><issn>0308-0161</issn><issn>1879-3541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AjfBfcc82qZduBgGXzDgRtchSW-dlLYpSWbAf286de3qXC7nHA4fQveUbCih5WO3sd10mjaMMJo-OS_5BVrRStQZL3J6iVaEkypLVnqNbkLoCKGCFOUKtVs8QDy4BrfO48lDY0204zdule2PHnCIKtoQrQlnR4igmp_zFzD0cEra4AjDBF7FJeCPJl2qx8YNkxthjOEWXbWqD3D3p2v09fL8uXvL9h-v77vtPjNcFDGrNeOaF1CTstJEaNbmhBkwvC4F5KSgouCsKXLOKgOkBtBK5yVrWqErULnga_Sw9Lo0WQZjI5iDceMIJkpapYqqTia-mIx3IXho5eTtoPyPpETOPGUnzzzlzFMuPFPqaUlB2n-y4Od6GE0i5uf2xtl_87_gXIGj</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Nicolas, Andrea</creator><creator>Messner, Mark C.</creator><creator>Sham, T.-L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4657-2317</orcidid><orcidid>https://orcid.org/0000000246572317</orcidid></search><sort><creationdate>20210801</creationdate><title>A method for predicting failure statistics for steady state elevated temperature structural components</title><author>Nicolas, Andrea ; Messner, Mark C. ; Sham, T.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-9b23b35e9068b07b2f402cec3967e40517532d54328ce09eebab462df7b8ea473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Creep life prediction</topic><topic>ENGINEERING</topic><topic>Gaussian process fitting</topic><topic>Grade 91 Steel</topic><topic>Monte Carlo method</topic><topic>Non-Newtonian Stokes flow</topic><topic>Weibull Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolas, Andrea</creatorcontrib><creatorcontrib>Messner, Mark C.</creatorcontrib><creatorcontrib>Sham, T.-L.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The International journal of pressure vessels and piping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolas, Andrea</au><au>Messner, Mark C.</au><au>Sham, T.-L.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for predicting failure statistics for steady state elevated temperature structural components</atitle><jtitle>The International journal of pressure vessels and piping</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>192</volume><spage>104363</spage><pages>104363-</pages><artnum>104363</artnum><issn>0308-0161</issn><eissn>1879-3541</eissn><abstract>This paper presents the initial development of a high temperature life prediction method that accounts for the variability in the material properties of Grade 91 steel. The method accounts for material variability by fitting a variable 3-parameter Weibull distribution to experimental rupture data and accounts for the variability of creep deformation on the steady-state stresses via a Monte Carlo approach. To ensure reasonable computational times, the model represents the material as an extremely viscous Stokes fluid with a non-Newtonian viscosity, therefore solving the stress relaxation problem with a steady, static, instead of transient, analysis. The complete statistical analysis combines this model for creep deformation with a probabilistic model for creep rupture to evaluate the probability of premature failure for a set of sample problems, comparing the predicted failure statistics to the design life predicted by the ASME Boiler and Pressure Vessel Code rules.
•Steady-state creep was modeled using Stokes flow with non-Newtonian viscosity.•A probabilistic model for rupture was developed to account for material variability.•The probabilistic model enables a comprehensive assessment of rupture life.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijpvp.2021.104363</doi><orcidid>https://orcid.org/0000-0002-4657-2317</orcidid><orcidid>https://orcid.org/0000000246572317</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-0161 |
ispartof | The International journal of pressure vessels and piping, 2021-08, Vol.192, p.104363, Article 104363 |
issn | 0308-0161 1879-3541 |
language | eng |
recordid | cdi_osti_scitechconnect_1840589 |
source | ScienceDirect Journals |
subjects | Creep life prediction ENGINEERING Gaussian process fitting Grade 91 Steel Monte Carlo method Non-Newtonian Stokes flow Weibull Distribution |
title | A method for predicting failure statistics for steady state elevated temperature structural components |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20predicting%20failure%20statistics%20for%20steady%20state%20elevated%20temperature%20structural%20components&rft.jtitle=The%20International%20journal%20of%20pressure%20vessels%20and%20piping&rft.au=Nicolas,%20Andrea&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-08-01&rft.volume=192&rft.spage=104363&rft.pages=104363-&rft.artnum=104363&rft.issn=0308-0161&rft.eissn=1879-3541&rft_id=info:doi/10.1016/j.ijpvp.2021.104363&rft_dat=%3Celsevier_osti_%3ES0308016121000612%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-9b23b35e9068b07b2f402cec3967e40517532d54328ce09eebab462df7b8ea473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |