Loading…

Discovery of Energy Storage Molecular Materials Using Quantum Chemistry-Guided Multiobjective Bayesian Optimization

Redox flow batteries (RFBs) are a promising technology for stationary energy storage applications due to their flexible design, scalability, and low cost. In RFBs, energy is carried in flowable redox-active materials (redoxmers) which are stored externally and pumped to the cell during operation. Fu...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2021-10, Vol.33 (20), p.8133-8144
Main Authors: Agarwal, Garvit, Doan, Hieu A, Robertson, Lily A, Zhang, Lu, Assary, Rajeev S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Redox flow batteries (RFBs) are a promising technology for stationary energy storage applications due to their flexible design, scalability, and low cost. In RFBs, energy is carried in flowable redox-active materials (redoxmers) which are stored externally and pumped to the cell during operation. Further improvements in the energy density of RFBs necessitates redoxmer designs with wider redox potential windows and higher solubility. Additionally, designing redoxmers with a fluorescence-enabled self-reporting functionality allows monitoring of the state of health of RFBs. To accelerate the discovery of redoxmers with desired properties, state-of-the-art machine learning (ML) methods, such as multiobjective Bayesian optimization (MBO), are useful. Here, we first employed density functional theory calculations to generate a database of reduction potentials, solvation free energies, and absorption wavelengths for 1400 redoxmer molecules based on a 2,1,3-benzothiadiazole (BzNSN) core structure. From the computed properties, we identified 22 Pareto-optimal molecules that represent best trade-off among all of the desired properties. We further utilized these data to develop and benchmark an MBO approach to identify candidates quickly and efficiently with multiple targeted properties. With MBO, optimal candidates from the 1400-molecule data set can be identified at least 15 times more efficiently compared to the brute force or random selection approach. Importantly, we utilized this approach for discovering promising redoxmers from an unseen database of 1 million BzNSN-based molecules, where we discovered 16 new Pareto-optimal molecules with significant improvements in properties over the initial 1400 molecules. We anticipate that this active learning technique is general and can be utilized for the discovery of any class of functional materials that satisfies multiple desired property criteria.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.1c02040