Loading…

Development and application of ReaxFF methodology for understanding the chemical dynamics of metal carbonates in aqueous solutions

A new ReaxFF reactive force field has been developed for metal carbonate systems including Na + , Ca 2+ , and Mg 2+ cations and the CO 3 2− anion. This force field is fully transferable with previous ReaxFF water and water/electrolyte descriptions. The Me-O-C (Me = metal) three-body valence angle pa...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2022-02, Vol.24 (5), p.3322-3337
Main Authors: Dasgupta, Nabankur, Chen, Chen, van Duin, Adri C. T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-d1d2778f8cd14896623a0ed691ea11e1d160569b50279492f4aedf86f67ca5723
cites cdi_FETCH-LOGICAL-c400t-d1d2778f8cd14896623a0ed691ea11e1d160569b50279492f4aedf86f67ca5723
container_end_page 3337
container_issue 5
container_start_page 3322
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Dasgupta, Nabankur
Chen, Chen
van Duin, Adri C. T
description A new ReaxFF reactive force field has been developed for metal carbonate systems including Na + , Ca 2+ , and Mg 2+ cations and the CO 3 2− anion. This force field is fully transferable with previous ReaxFF water and water/electrolyte descriptions. The Me-O-C (Me = metal) three-body valence angle parameters and Me-C non-reactive parameters of the force field have been optimized against quantum mechanical calculations including equations of state, heats of formation, heats of reaction, angle distortions and vibrational frequencies. The new metal carbonate force field has been validated using molecular dynamics simulations to study the solvation and reactivity of metal and carbonate ions in water at 300 K and 700 K. The coordination radius and self-diffusion coefficient show good consistency with existing experimental and simulation results. The angular distribution analysis explains the structural preference of carbonate ions to form carbonates and bicarbonates, where Na + predominantly forms carbonates due to weaker angular strain, while Ca 2+ and Mg 2+ prefer to form bicarbonate monodentate in nature. Residence time distribution analyses on different systems reveal the role of ions in accelerating and decelerating the dynamics of water and carbonate ions under different thermodynamic conditions. The formation and dissolution of bicarbonates and carbonates in solution were explored on the basis of the protonation capability in different systems. The nucleation phenomenon of metal carbonates at ambient and supercritical conditions is explained from the perspective of cluster formation over time: Ca 2+ ions can form prenucleation clusters at ambient temperature but show saturation with increasing temperature, whereas Na + and Mg 2+ ions show a rapid increase in cluster size and amount upon increasing time and temperature. A ReaxFF force field has been developed for metal carbonates (CaCO 3 , MgCO 3 and Na 2 CO 3 ) and is used for molecular dynamics simulations to study their behavior in aqueous solution at ambient and supercritical conditions.
doi_str_mv 10.1039/d1cp04790f
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1841449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624698012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d1d2778f8cd14896623a0ed691ea11e1d160569b50279492f4aedf86f67ca5723</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi1ERUvhwh1kwQVVWvA4jhMfqy1LkSqBEJwjrz3upkrsYDuIvfLLcdh2kTjNaOZ550MvIS-AvQNWqfcWzMREo5h7RM5AyGqlWCseH_NGnpKnKd0xxqCG6gk5rWomWd3IM_L7Cn_iEKYRfabaW6qnaeiNzn3wNDj6FfWvzYaOmHfBhiHc7qkLkc7eYky5CHp_S_MOqdnhWHQDtXuvS5YWdZGVitFxG7zOmGjvqf4xY5gTTWGYly3pGTlxekj4_D6ek--bD9_W16ubzx8_rS9vVkYwllcWLG-a1rXGgmiVlLzSDK1UgBoAwUJ5SaptzXijhOJOaLSulU42RtcNr87J68PckHLfJdNnNDsTvEeTO2gFCKEK9PYATTGUQ1Puxj4ZHAbtl6s7LjnnjVS1KOib_9C7MEdfXlgoIVXLYNl6caBMDClFdN0U-1HHfQesW-zrrmD95a99mwK_uh85b0e0R_TBrwK8PAAxmWP3n__VH3FYn7U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624698012</pqid></control><display><type>article</type><title>Development and application of ReaxFF methodology for understanding the chemical dynamics of metal carbonates in aqueous solutions</title><source>Royal Society of Chemistry</source><creator>Dasgupta, Nabankur ; Chen, Chen ; van Duin, Adri C. T</creator><creatorcontrib>Dasgupta, Nabankur ; Chen, Chen ; van Duin, Adri C. T</creatorcontrib><description>A new ReaxFF reactive force field has been developed for metal carbonate systems including Na + , Ca 2+ , and Mg 2+ cations and the CO 3 2− anion. This force field is fully transferable with previous ReaxFF water and water/electrolyte descriptions. The Me-O-C (Me = metal) three-body valence angle parameters and Me-C non-reactive parameters of the force field have been optimized against quantum mechanical calculations including equations of state, heats of formation, heats of reaction, angle distortions and vibrational frequencies. The new metal carbonate force field has been validated using molecular dynamics simulations to study the solvation and reactivity of metal and carbonate ions in water at 300 K and 700 K. The coordination radius and self-diffusion coefficient show good consistency with existing experimental and simulation results. The angular distribution analysis explains the structural preference of carbonate ions to form carbonates and bicarbonates, where Na + predominantly forms carbonates due to weaker angular strain, while Ca 2+ and Mg 2+ prefer to form bicarbonate monodentate in nature. Residence time distribution analyses on different systems reveal the role of ions in accelerating and decelerating the dynamics of water and carbonate ions under different thermodynamic conditions. The formation and dissolution of bicarbonates and carbonates in solution were explored on the basis of the protonation capability in different systems. The nucleation phenomenon of metal carbonates at ambient and supercritical conditions is explained from the perspective of cluster formation over time: Ca 2+ ions can form prenucleation clusters at ambient temperature but show saturation with increasing temperature, whereas Na + and Mg 2+ ions show a rapid increase in cluster size and amount upon increasing time and temperature. A ReaxFF force field has been developed for metal carbonates (CaCO 3 , MgCO 3 and Na 2 CO 3 ) and is used for molecular dynamics simulations to study their behavior in aqueous solution at ambient and supercritical conditions.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp04790f</identifier><identifier>PMID: 35060576</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Ambient temperature ; Angular distribution ; Aqueous solutions ; Bicarbonates ; Calcium ions ; Carbonates ; Clusters ; Deceleration ; Diffusion coefficient ; Equations of state ; Heat of formation ; Heat of reaction ; Mathematical analysis ; Molecular dynamics ; Nucleation ; Parameters ; Protonation ; Quantum mechanics ; Residence time distribution ; Self diffusion ; Sodium ; Solvation ; Vibrational spectra</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (5), p.3322-3337</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d1d2778f8cd14896623a0ed691ea11e1d160569b50279492f4aedf86f67ca5723</citedby><cites>FETCH-LOGICAL-c400t-d1d2778f8cd14896623a0ed691ea11e1d160569b50279492f4aedf86f67ca5723</cites><orcidid>0000-0002-8316-7898 ; 0000-0002-5262-6086 ; 0000000283167898 ; 0000000252626086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35060576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1841449$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dasgupta, Nabankur</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>van Duin, Adri C. T</creatorcontrib><title>Development and application of ReaxFF methodology for understanding the chemical dynamics of metal carbonates in aqueous solutions</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>A new ReaxFF reactive force field has been developed for metal carbonate systems including Na + , Ca 2+ , and Mg 2+ cations and the CO 3 2− anion. This force field is fully transferable with previous ReaxFF water and water/electrolyte descriptions. The Me-O-C (Me = metal) three-body valence angle parameters and Me-C non-reactive parameters of the force field have been optimized against quantum mechanical calculations including equations of state, heats of formation, heats of reaction, angle distortions and vibrational frequencies. The new metal carbonate force field has been validated using molecular dynamics simulations to study the solvation and reactivity of metal and carbonate ions in water at 300 K and 700 K. The coordination radius and self-diffusion coefficient show good consistency with existing experimental and simulation results. The angular distribution analysis explains the structural preference of carbonate ions to form carbonates and bicarbonates, where Na + predominantly forms carbonates due to weaker angular strain, while Ca 2+ and Mg 2+ prefer to form bicarbonate monodentate in nature. Residence time distribution analyses on different systems reveal the role of ions in accelerating and decelerating the dynamics of water and carbonate ions under different thermodynamic conditions. The formation and dissolution of bicarbonates and carbonates in solution were explored on the basis of the protonation capability in different systems. The nucleation phenomenon of metal carbonates at ambient and supercritical conditions is explained from the perspective of cluster formation over time: Ca 2+ ions can form prenucleation clusters at ambient temperature but show saturation with increasing temperature, whereas Na + and Mg 2+ ions show a rapid increase in cluster size and amount upon increasing time and temperature. A ReaxFF force field has been developed for metal carbonates (CaCO 3 , MgCO 3 and Na 2 CO 3 ) and is used for molecular dynamics simulations to study their behavior in aqueous solution at ambient and supercritical conditions.</description><subject>Ambient temperature</subject><subject>Angular distribution</subject><subject>Aqueous solutions</subject><subject>Bicarbonates</subject><subject>Calcium ions</subject><subject>Carbonates</subject><subject>Clusters</subject><subject>Deceleration</subject><subject>Diffusion coefficient</subject><subject>Equations of state</subject><subject>Heat of formation</subject><subject>Heat of reaction</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Nucleation</subject><subject>Parameters</subject><subject>Protonation</subject><subject>Quantum mechanics</subject><subject>Residence time distribution</subject><subject>Self diffusion</subject><subject>Sodium</subject><subject>Solvation</subject><subject>Vibrational spectra</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi1ERUvhwh1kwQVVWvA4jhMfqy1LkSqBEJwjrz3upkrsYDuIvfLLcdh2kTjNaOZ550MvIS-AvQNWqfcWzMREo5h7RM5AyGqlWCseH_NGnpKnKd0xxqCG6gk5rWomWd3IM_L7Cn_iEKYRfabaW6qnaeiNzn3wNDj6FfWvzYaOmHfBhiHc7qkLkc7eYky5CHp_S_MOqdnhWHQDtXuvS5YWdZGVitFxG7zOmGjvqf4xY5gTTWGYly3pGTlxekj4_D6ek--bD9_W16ubzx8_rS9vVkYwllcWLG-a1rXGgmiVlLzSDK1UgBoAwUJ5SaptzXijhOJOaLSulU42RtcNr87J68PckHLfJdNnNDsTvEeTO2gFCKEK9PYATTGUQ1Puxj4ZHAbtl6s7LjnnjVS1KOib_9C7MEdfXlgoIVXLYNl6caBMDClFdN0U-1HHfQesW-zrrmD95a99mwK_uh85b0e0R_TBrwK8PAAxmWP3n__VH3FYn7U</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Dasgupta, Nabankur</creator><creator>Chen, Chen</creator><creator>van Duin, Adri C. T</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8316-7898</orcidid><orcidid>https://orcid.org/0000-0002-5262-6086</orcidid><orcidid>https://orcid.org/0000000283167898</orcidid><orcidid>https://orcid.org/0000000252626086</orcidid></search><sort><creationdate>20220202</creationdate><title>Development and application of ReaxFF methodology for understanding the chemical dynamics of metal carbonates in aqueous solutions</title><author>Dasgupta, Nabankur ; Chen, Chen ; van Duin, Adri C. T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d1d2778f8cd14896623a0ed691ea11e1d160569b50279492f4aedf86f67ca5723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambient temperature</topic><topic>Angular distribution</topic><topic>Aqueous solutions</topic><topic>Bicarbonates</topic><topic>Calcium ions</topic><topic>Carbonates</topic><topic>Clusters</topic><topic>Deceleration</topic><topic>Diffusion coefficient</topic><topic>Equations of state</topic><topic>Heat of formation</topic><topic>Heat of reaction</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Nucleation</topic><topic>Parameters</topic><topic>Protonation</topic><topic>Quantum mechanics</topic><topic>Residence time distribution</topic><topic>Self diffusion</topic><topic>Sodium</topic><topic>Solvation</topic><topic>Vibrational spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dasgupta, Nabankur</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>van Duin, Adri C. T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dasgupta, Nabankur</au><au>Chen, Chen</au><au>van Duin, Adri C. T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and application of ReaxFF methodology for understanding the chemical dynamics of metal carbonates in aqueous solutions</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2022-02-02</date><risdate>2022</risdate><volume>24</volume><issue>5</issue><spage>3322</spage><epage>3337</epage><pages>3322-3337</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>A new ReaxFF reactive force field has been developed for metal carbonate systems including Na + , Ca 2+ , and Mg 2+ cations and the CO 3 2− anion. This force field is fully transferable with previous ReaxFF water and water/electrolyte descriptions. The Me-O-C (Me = metal) three-body valence angle parameters and Me-C non-reactive parameters of the force field have been optimized against quantum mechanical calculations including equations of state, heats of formation, heats of reaction, angle distortions and vibrational frequencies. The new metal carbonate force field has been validated using molecular dynamics simulations to study the solvation and reactivity of metal and carbonate ions in water at 300 K and 700 K. The coordination radius and self-diffusion coefficient show good consistency with existing experimental and simulation results. The angular distribution analysis explains the structural preference of carbonate ions to form carbonates and bicarbonates, where Na + predominantly forms carbonates due to weaker angular strain, while Ca 2+ and Mg 2+ prefer to form bicarbonate monodentate in nature. Residence time distribution analyses on different systems reveal the role of ions in accelerating and decelerating the dynamics of water and carbonate ions under different thermodynamic conditions. The formation and dissolution of bicarbonates and carbonates in solution were explored on the basis of the protonation capability in different systems. The nucleation phenomenon of metal carbonates at ambient and supercritical conditions is explained from the perspective of cluster formation over time: Ca 2+ ions can form prenucleation clusters at ambient temperature but show saturation with increasing temperature, whereas Na + and Mg 2+ ions show a rapid increase in cluster size and amount upon increasing time and temperature. A ReaxFF force field has been developed for metal carbonates (CaCO 3 , MgCO 3 and Na 2 CO 3 ) and is used for molecular dynamics simulations to study their behavior in aqueous solution at ambient and supercritical conditions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35060576</pmid><doi>10.1039/d1cp04790f</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8316-7898</orcidid><orcidid>https://orcid.org/0000-0002-5262-6086</orcidid><orcidid>https://orcid.org/0000000283167898</orcidid><orcidid>https://orcid.org/0000000252626086</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-02, Vol.24 (5), p.3322-3337
issn 1463-9076
1463-9084
language eng
recordid cdi_osti_scitechconnect_1841449
source Royal Society of Chemistry
subjects Ambient temperature
Angular distribution
Aqueous solutions
Bicarbonates
Calcium ions
Carbonates
Clusters
Deceleration
Diffusion coefficient
Equations of state
Heat of formation
Heat of reaction
Mathematical analysis
Molecular dynamics
Nucleation
Parameters
Protonation
Quantum mechanics
Residence time distribution
Self diffusion
Sodium
Solvation
Vibrational spectra
title Development and application of ReaxFF methodology for understanding the chemical dynamics of metal carbonates in aqueous solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20application%20of%20ReaxFF%20methodology%20for%20understanding%20the%20chemical%20dynamics%20of%20metal%20carbonates%20in%20aqueous%20solutions&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Dasgupta,%20Nabankur&rft.date=2022-02-02&rft.volume=24&rft.issue=5&rft.spage=3322&rft.epage=3337&rft.pages=3322-3337&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp04790f&rft_dat=%3Cproquest_osti_%3E2624698012%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-d1d2778f8cd14896623a0ed691ea11e1d160569b50279492f4aedf86f67ca5723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624698012&rft_id=info:pmid/35060576&rfr_iscdi=true