Loading…

Cost and Life-Cycle Greenhouse Gas Implications of Integrating Biogas Upgrading and Carbon Capture Technologies in Cellulosic Biorefineries

Gaseous streams in biorefineries have been undervalued and underutilized. In cellulosic biorefineries, coproduced biogas is assumed to be combusted alongside lignin to generate process heat and electricity. Biogas can instead be upgraded to compressed biomethane and used as a transportation fuel. Ca...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2020-10, Vol.54 (20), p.12810-12819
Main Authors: Yang, Minliang, Baral, Nawa Raj, Anastasopoulou, Aikaterini, Breunig, Hanna M, Scown, Corinne D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gaseous streams in biorefineries have been undervalued and underutilized. In cellulosic biorefineries, coproduced biogas is assumed to be combusted alongside lignin to generate process heat and electricity. Biogas can instead be upgraded to compressed biomethane and used as a transportation fuel. Capturing CO -rich streams generated in biorefineries can also contribute to greenhouse gas (GHG) mitigation goals. We explore the economic and life-cycle GHG impacts of biogas upgrading and CO capture and storage (CCS) at ionic liquid-based cellulosic ethanol biorefineries using biomass sorghum. Without policy incentives, biorefineries with biogas upgrading systems can achieve a comparable minimum ethanol selling price (MESP) and reduced GHG footprint ($1.38/liter gasoline equivalent (LGE) and 12.9 gCO /MJ) relative to facilities that combust biogas onsite ($1.34/LGE and 24.3 gCO /MJ). Incorporating renewable identification number (RIN) values advantages facilities that upgrade biogas relative to other options (MESP of $0.72/LGE). Incorporating CCS increases the MESP but dramatically decreases the GHG footprint (-21.3 gCO /MJ for partial, -110.7 gCO /MJ for full CCS). The addition of CCS also decreases the cost of carbon mitigation to as low as $52-$78/t CO , depending on the assumed fuel selling price, and is the lowest-cost option if both RIN and California's Low Carbon Fuel Standard credits are incorporated.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.0c02816