Loading…

Substituent Effects on Exchange Coupling and Magnetic Relaxation in 2,2′-Bipyrimidine Radical-Bridged Dilanthanide Complexes

Systematic analysis of related compounds is crucial to the design of single-molecule magnets with improved properties, yet such studies on multinuclear lanthanide complexes with strong magnetic coupling remain rare. Herein, we present the synthesis and magnetic characterization of the series of radi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2020-12, Vol.142 (50), p.21197-21209
Main Authors: Gould, Colin A, Mu, Edward, Vieru, Veacheslav, Darago, Lucy E, Chakarawet, Khetpakorn, Gonzalez, Miguel I, Demir, Selvan, Long, Jeffrey R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Systematic analysis of related compounds is crucial to the design of single-molecule magnets with improved properties, yet such studies on multinuclear lanthanide complexes with strong magnetic coupling remain rare. Herein, we present the synthesis and magnetic characterization of the series of radical-bridged dilanthanide complex salts [(Cp*2Ln)2(μ-5,5′-R2bpym)]­(BPh4) (Ln = Gd, Dy; R = NMe2 (1), OEt (2), Me (3), F (4); bpym = 2,2′-bipyrimidine). Modification of the substituent on the bridging 5,5′-R2bpym radical anion allows the magnetic exchange coupling constant, J Gd–rad, for the gadolinium compounds in this series to be tuned over a range from −2.7 cm–1 (1) to −11.1 cm–1 (4), with electron-withdrawing or -donating substituents increasing or decreasing the strength of exchange coupling, respectively. Modulation of the exchange coupling interaction has a significant impact on the magnetic relaxation dynamics of the single-molecule magnets 1-Dy through 4-Dy, where stronger J Gd–rad for the corresponding Gd3+ compounds is associated with larger thermal barriers to magnetic relaxation (U eff), open magnetic hysteresis at higher temperatures, and slower magnetic relaxation rates for through-barrier processes. Further, we derive an empirical linear correlation between the experimental U eff values for 1-Dy through 4-Dy and the magnitude of J Gd–rad for the corresponding gadolinium derivatives that provides insight into the electronic structure of these complexes. This simple model applies to other organic radical-bridged dysprosium complexes in the literature, and it establishes clear design criteria for increasing magnetic operating temperatures in radical-bridged molecules.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c10612