Loading…

Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices

Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2022-01, Vol.14 (1), p.2335-2342
Main Authors: Kang, Zhenye, Chen, Yingying, Wang, Hao, Alia, Shaun M, Pivovar, Bryan S, Bender, Guido
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting PEMWE cost competitiveness for large-scale implementation. In this study, we demonstrated, for the first time, a novel two-dimensional (2D)-patterned electrode with edge effects to address these challenges. The edge effect was induced by membrane properties, potential distribution, and counter electrode coverage and could be optimized by tuning the catalyst layer dimensions. To achieve identical PEMWE performance, the optimal pattern saved the 21% anode PGM catalyst compared with the conventional catalyst fully covered electrode. The PGM catalyst could be further reduced by 61% to boost mass activity with no significant performance loss. The results also indicated that the electrode uniformity in PEMWE cells might not be as critical as that in PEM fuel cells. The novel 2D-patterned electrode could effectively reduce PGM catalyst loading, accelerating affordable and large-scale production of hydrogen and other value-added chemicals via electrolysis.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c20525