Loading…
Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices
Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting...
Saved in:
Published in: | ACS applied materials & interfaces 2022-01, Vol.14 (1), p.2335-2342 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43 |
---|---|
cites | cdi_FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43 |
container_end_page | 2342 |
container_issue | 1 |
container_start_page | 2335 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Kang, Zhenye Chen, Yingying Wang, Hao Alia, Shaun M Pivovar, Bryan S Bender, Guido |
description | Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting PEMWE cost competitiveness for large-scale implementation. In this study, we demonstrated, for the first time, a novel two-dimensional (2D)-patterned electrode with edge effects to address these challenges. The edge effect was induced by membrane properties, potential distribution, and counter electrode coverage and could be optimized by tuning the catalyst layer dimensions. To achieve identical PEMWE performance, the optimal pattern saved the 21% anode PGM catalyst compared with the conventional catalyst fully covered electrode. The PGM catalyst could be further reduced by 61% to boost mass activity with no significant performance loss. The results also indicated that the electrode uniformity in PEMWE cells might not be as critical as that in PEM fuel cells. The novel 2D-patterned electrode could effectively reduce PGM catalyst loading, accelerating affordable and large-scale production of hydrogen and other value-added chemicals via electrolysis. |
doi_str_mv | 10.1021/acsami.1c20525 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1843365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616288049</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EoqVw5YgsThVSFo_tJM4RdReKVGAPII6W40x2XSV2sb0VvfPDccm2N04zmvnmjT2PkNfAVsA4vDc2mdmtwHJW8_oJOYVOykrxmj99zKU8IS9SumasEQV7Tk6E7FoFSpySP2uXbLjF6PyOGj_QNc7BpxxN_lehX0tzopdut6-2GMcQ5_s6X1dbkzNGjwPdTGhzDAPS0qbbGHLw1ea33Ru_Q_oF5z4aj_SnKfwDPN0ll8qyW2cxvSTPRjMlfHWMZ-THx833i8vq6tunzxcfriojujZXva1N3QBIANGalgtlbc9YjY1inWqHvkEL_dizsZPWCAbDyDrgreIcDFgpzsjbRTek7HSyLqPd2-B9eZIGJYVo6gKdL9BNDL8OmLKey4lwmsofwiFp3kDDlWKyK-hqQW0MKUUc9U10s4l3Gpi-t0cv9uijPWXgzVH70M84POIPfhTg3QKUQX0dDtGXe_xP7S83iZrc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616288049</pqid></control><display><type>article</type><title>Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kang, Zhenye ; Chen, Yingying ; Wang, Hao ; Alia, Shaun M ; Pivovar, Bryan S ; Bender, Guido</creator><creatorcontrib>Kang, Zhenye ; Chen, Yingying ; Wang, Hao ; Alia, Shaun M ; Pivovar, Bryan S ; Bender, Guido ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting PEMWE cost competitiveness for large-scale implementation. In this study, we demonstrated, for the first time, a novel two-dimensional (2D)-patterned electrode with edge effects to address these challenges. The edge effect was induced by membrane properties, potential distribution, and counter electrode coverage and could be optimized by tuning the catalyst layer dimensions. To achieve identical PEMWE performance, the optimal pattern saved the 21% anode PGM catalyst compared with the conventional catalyst fully covered electrode. The PGM catalyst could be further reduced by 61% to boost mass activity with no significant performance loss. The results also indicated that the electrode uniformity in PEMWE cells might not be as critical as that in PEM fuel cells. The novel 2D-patterned electrode could effectively reduce PGM catalyst loading, accelerating affordable and large-scale production of hydrogen and other value-added chemicals via electrolysis.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c20525</identifier><identifier>PMID: 34978183</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>edge effect ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; mass activity ; oxygen evolution reaction ; patterned electrode ; PEMWE ; Surfaces, Interfaces, and Applications ; water electrolysis</subject><ispartof>ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.2335-2342</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43</citedby><cites>FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43</cites><orcidid>0000-0002-1731-0705 ; 0000-0003-0674-0811 ; 0000-0002-7647-9383 ; 0000000151815363 ; 0000000217310705 ; 0000000306740811 ; 0000000276479383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34978183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1843365$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Zhenye</creatorcontrib><creatorcontrib>Chen, Yingying</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Alia, Shaun M</creatorcontrib><creatorcontrib>Pivovar, Bryan S</creatorcontrib><creatorcontrib>Bender, Guido</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting PEMWE cost competitiveness for large-scale implementation. In this study, we demonstrated, for the first time, a novel two-dimensional (2D)-patterned electrode with edge effects to address these challenges. The edge effect was induced by membrane properties, potential distribution, and counter electrode coverage and could be optimized by tuning the catalyst layer dimensions. To achieve identical PEMWE performance, the optimal pattern saved the 21% anode PGM catalyst compared with the conventional catalyst fully covered electrode. The PGM catalyst could be further reduced by 61% to boost mass activity with no significant performance loss. The results also indicated that the electrode uniformity in PEMWE cells might not be as critical as that in PEM fuel cells. The novel 2D-patterned electrode could effectively reduce PGM catalyst loading, accelerating affordable and large-scale production of hydrogen and other value-added chemicals via electrolysis.</description><subject>edge effect</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>mass activity</subject><subject>oxygen evolution reaction</subject><subject>patterned electrode</subject><subject>PEMWE</subject><subject>Surfaces, Interfaces, and Applications</subject><subject>water electrolysis</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EoqVw5YgsThVSFo_tJM4RdReKVGAPII6W40x2XSV2sb0VvfPDccm2N04zmvnmjT2PkNfAVsA4vDc2mdmtwHJW8_oJOYVOykrxmj99zKU8IS9SumasEQV7Tk6E7FoFSpySP2uXbLjF6PyOGj_QNc7BpxxN_lehX0tzopdut6-2GMcQ5_s6X1dbkzNGjwPdTGhzDAPS0qbbGHLw1ea33Ru_Q_oF5z4aj_SnKfwDPN0ll8qyW2cxvSTPRjMlfHWMZ-THx833i8vq6tunzxcfriojujZXva1N3QBIANGalgtlbc9YjY1inWqHvkEL_dizsZPWCAbDyDrgreIcDFgpzsjbRTek7HSyLqPd2-B9eZIGJYVo6gKdL9BNDL8OmLKey4lwmsofwiFp3kDDlWKyK-hqQW0MKUUc9U10s4l3Gpi-t0cv9uijPWXgzVH70M84POIPfhTg3QKUQX0dDtGXe_xP7S83iZrc</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Kang, Zhenye</creator><creator>Chen, Yingying</creator><creator>Wang, Hao</creator><creator>Alia, Shaun M</creator><creator>Pivovar, Bryan S</creator><creator>Bender, Guido</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1731-0705</orcidid><orcidid>https://orcid.org/0000-0003-0674-0811</orcidid><orcidid>https://orcid.org/0000-0002-7647-9383</orcidid><orcidid>https://orcid.org/0000000151815363</orcidid><orcidid>https://orcid.org/0000000217310705</orcidid><orcidid>https://orcid.org/0000000306740811</orcidid><orcidid>https://orcid.org/0000000276479383</orcidid></search><sort><creationdate>20220112</creationdate><title>Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices</title><author>Kang, Zhenye ; Chen, Yingying ; Wang, Hao ; Alia, Shaun M ; Pivovar, Bryan S ; Bender, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>edge effect</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>mass activity</topic><topic>oxygen evolution reaction</topic><topic>patterned electrode</topic><topic>PEMWE</topic><topic>Surfaces, Interfaces, and Applications</topic><topic>water electrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Zhenye</creatorcontrib><creatorcontrib>Chen, Yingying</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Alia, Shaun M</creatorcontrib><creatorcontrib>Pivovar, Bryan S</creatorcontrib><creatorcontrib>Bender, Guido</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Zhenye</au><au>Chen, Yingying</au><au>Wang, Hao</au><au>Alia, Shaun M</au><au>Pivovar, Bryan S</au><au>Bender, Guido</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>2335</spage><epage>2342</epage><pages>2335-2342</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting PEMWE cost competitiveness for large-scale implementation. In this study, we demonstrated, for the first time, a novel two-dimensional (2D)-patterned electrode with edge effects to address these challenges. The edge effect was induced by membrane properties, potential distribution, and counter electrode coverage and could be optimized by tuning the catalyst layer dimensions. To achieve identical PEMWE performance, the optimal pattern saved the 21% anode PGM catalyst compared with the conventional catalyst fully covered electrode. The PGM catalyst could be further reduced by 61% to boost mass activity with no significant performance loss. The results also indicated that the electrode uniformity in PEMWE cells might not be as critical as that in PEM fuel cells. The novel 2D-patterned electrode could effectively reduce PGM catalyst loading, accelerating affordable and large-scale production of hydrogen and other value-added chemicals via electrolysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34978183</pmid><doi>10.1021/acsami.1c20525</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1731-0705</orcidid><orcidid>https://orcid.org/0000-0003-0674-0811</orcidid><orcidid>https://orcid.org/0000-0002-7647-9383</orcidid><orcidid>https://orcid.org/0000000151815363</orcidid><orcidid>https://orcid.org/0000000217310705</orcidid><orcidid>https://orcid.org/0000000306740811</orcidid><orcidid>https://orcid.org/0000000276479383</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.2335-2342 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_1843365 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | edge effect INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY mass activity oxygen evolution reaction patterned electrode PEMWE Surfaces, Interfaces, and Applications water electrolysis |
title | Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20and%20Demonstrating%20a%20Novel%20High-Performing%202D-Patterned%20Electrode%20for%20Proton-Exchange%20Membrane%20Water%20Electrolysis%20Devices&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kang,%20Zhenye&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2022-01-12&rft.volume=14&rft.issue=1&rft.spage=2335&rft.epage=2342&rft.pages=2335-2342&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c20525&rft_dat=%3Cproquest_osti_%3E2616288049%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616288049&rft_id=info:pmid/34978183&rfr_iscdi=true |