Loading…

Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices

Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2022-01, Vol.14 (1), p.2335-2342
Main Authors: Kang, Zhenye, Chen, Yingying, Wang, Hao, Alia, Shaun M, Pivovar, Bryan S, Bender, Guido
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43
cites cdi_FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43
container_end_page 2342
container_issue 1
container_start_page 2335
container_title ACS applied materials & interfaces
container_volume 14
creator Kang, Zhenye
Chen, Yingying
Wang, Hao
Alia, Shaun M
Pivovar, Bryan S
Bender, Guido
description Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting PEMWE cost competitiveness for large-scale implementation. In this study, we demonstrated, for the first time, a novel two-dimensional (2D)-patterned electrode with edge effects to address these challenges. The edge effect was induced by membrane properties, potential distribution, and counter electrode coverage and could be optimized by tuning the catalyst layer dimensions. To achieve identical PEMWE performance, the optimal pattern saved the 21% anode PGM catalyst compared with the conventional catalyst fully covered electrode. The PGM catalyst could be further reduced by 61% to boost mass activity with no significant performance loss. The results also indicated that the electrode uniformity in PEMWE cells might not be as critical as that in PEM fuel cells. The novel 2D-patterned electrode could effectively reduce PGM catalyst loading, accelerating affordable and large-scale production of hydrogen and other value-added chemicals via electrolysis.
doi_str_mv 10.1021/acsami.1c20525
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1843365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616288049</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EoqVw5YgsThVSFo_tJM4RdReKVGAPII6W40x2XSV2sb0VvfPDccm2N04zmvnmjT2PkNfAVsA4vDc2mdmtwHJW8_oJOYVOykrxmj99zKU8IS9SumasEQV7Tk6E7FoFSpySP2uXbLjF6PyOGj_QNc7BpxxN_lehX0tzopdut6-2GMcQ5_s6X1dbkzNGjwPdTGhzDAPS0qbbGHLw1ea33Ru_Q_oF5z4aj_SnKfwDPN0ll8qyW2cxvSTPRjMlfHWMZ-THx833i8vq6tunzxcfriojujZXva1N3QBIANGalgtlbc9YjY1inWqHvkEL_dizsZPWCAbDyDrgreIcDFgpzsjbRTek7HSyLqPd2-B9eZIGJYVo6gKdL9BNDL8OmLKey4lwmsofwiFp3kDDlWKyK-hqQW0MKUUc9U10s4l3Gpi-t0cv9uijPWXgzVH70M84POIPfhTg3QKUQX0dDtGXe_xP7S83iZrc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616288049</pqid></control><display><type>article</type><title>Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kang, Zhenye ; Chen, Yingying ; Wang, Hao ; Alia, Shaun M ; Pivovar, Bryan S ; Bender, Guido</creator><creatorcontrib>Kang, Zhenye ; Chen, Yingying ; Wang, Hao ; Alia, Shaun M ; Pivovar, Bryan S ; Bender, Guido ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting PEMWE cost competitiveness for large-scale implementation. In this study, we demonstrated, for the first time, a novel two-dimensional (2D)-patterned electrode with edge effects to address these challenges. The edge effect was induced by membrane properties, potential distribution, and counter electrode coverage and could be optimized by tuning the catalyst layer dimensions. To achieve identical PEMWE performance, the optimal pattern saved the 21% anode PGM catalyst compared with the conventional catalyst fully covered electrode. The PGM catalyst could be further reduced by 61% to boost mass activity with no significant performance loss. The results also indicated that the electrode uniformity in PEMWE cells might not be as critical as that in PEM fuel cells. The novel 2D-patterned electrode could effectively reduce PGM catalyst loading, accelerating affordable and large-scale production of hydrogen and other value-added chemicals via electrolysis.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c20525</identifier><identifier>PMID: 34978183</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>edge effect ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; mass activity ; oxygen evolution reaction ; patterned electrode ; PEMWE ; Surfaces, Interfaces, and Applications ; water electrolysis</subject><ispartof>ACS applied materials &amp; interfaces, 2022-01, Vol.14 (1), p.2335-2342</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43</citedby><cites>FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43</cites><orcidid>0000-0002-1731-0705 ; 0000-0003-0674-0811 ; 0000-0002-7647-9383 ; 0000000151815363 ; 0000000217310705 ; 0000000306740811 ; 0000000276479383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34978183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1843365$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Zhenye</creatorcontrib><creatorcontrib>Chen, Yingying</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Alia, Shaun M</creatorcontrib><creatorcontrib>Pivovar, Bryan S</creatorcontrib><creatorcontrib>Bender, Guido</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting PEMWE cost competitiveness for large-scale implementation. In this study, we demonstrated, for the first time, a novel two-dimensional (2D)-patterned electrode with edge effects to address these challenges. The edge effect was induced by membrane properties, potential distribution, and counter electrode coverage and could be optimized by tuning the catalyst layer dimensions. To achieve identical PEMWE performance, the optimal pattern saved the 21% anode PGM catalyst compared with the conventional catalyst fully covered electrode. The PGM catalyst could be further reduced by 61% to boost mass activity with no significant performance loss. The results also indicated that the electrode uniformity in PEMWE cells might not be as critical as that in PEM fuel cells. The novel 2D-patterned electrode could effectively reduce PGM catalyst loading, accelerating affordable and large-scale production of hydrogen and other value-added chemicals via electrolysis.</description><subject>edge effect</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>mass activity</subject><subject>oxygen evolution reaction</subject><subject>patterned electrode</subject><subject>PEMWE</subject><subject>Surfaces, Interfaces, and Applications</subject><subject>water electrolysis</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EoqVw5YgsThVSFo_tJM4RdReKVGAPII6W40x2XSV2sb0VvfPDccm2N04zmvnmjT2PkNfAVsA4vDc2mdmtwHJW8_oJOYVOykrxmj99zKU8IS9SumasEQV7Tk6E7FoFSpySP2uXbLjF6PyOGj_QNc7BpxxN_lehX0tzopdut6-2GMcQ5_s6X1dbkzNGjwPdTGhzDAPS0qbbGHLw1ea33Ru_Q_oF5z4aj_SnKfwDPN0ll8qyW2cxvSTPRjMlfHWMZ-THx833i8vq6tunzxcfriojujZXva1N3QBIANGalgtlbc9YjY1inWqHvkEL_dizsZPWCAbDyDrgreIcDFgpzsjbRTek7HSyLqPd2-B9eZIGJYVo6gKdL9BNDL8OmLKey4lwmsofwiFp3kDDlWKyK-hqQW0MKUUc9U10s4l3Gpi-t0cv9uijPWXgzVH70M84POIPfhTg3QKUQX0dDtGXe_xP7S83iZrc</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Kang, Zhenye</creator><creator>Chen, Yingying</creator><creator>Wang, Hao</creator><creator>Alia, Shaun M</creator><creator>Pivovar, Bryan S</creator><creator>Bender, Guido</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1731-0705</orcidid><orcidid>https://orcid.org/0000-0003-0674-0811</orcidid><orcidid>https://orcid.org/0000-0002-7647-9383</orcidid><orcidid>https://orcid.org/0000000151815363</orcidid><orcidid>https://orcid.org/0000000217310705</orcidid><orcidid>https://orcid.org/0000000306740811</orcidid><orcidid>https://orcid.org/0000000276479383</orcidid></search><sort><creationdate>20220112</creationdate><title>Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices</title><author>Kang, Zhenye ; Chen, Yingying ; Wang, Hao ; Alia, Shaun M ; Pivovar, Bryan S ; Bender, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>edge effect</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>mass activity</topic><topic>oxygen evolution reaction</topic><topic>patterned electrode</topic><topic>PEMWE</topic><topic>Surfaces, Interfaces, and Applications</topic><topic>water electrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Zhenye</creatorcontrib><creatorcontrib>Chen, Yingying</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Alia, Shaun M</creatorcontrib><creatorcontrib>Pivovar, Bryan S</creatorcontrib><creatorcontrib>Bender, Guido</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Zhenye</au><au>Chen, Yingying</au><au>Wang, Hao</au><au>Alia, Shaun M</au><au>Pivovar, Bryan S</au><au>Bender, Guido</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>2335</spage><epage>2342</epage><pages>2335-2342</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting PEMWE cost competitiveness for large-scale implementation. In this study, we demonstrated, for the first time, a novel two-dimensional (2D)-patterned electrode with edge effects to address these challenges. The edge effect was induced by membrane properties, potential distribution, and counter electrode coverage and could be optimized by tuning the catalyst layer dimensions. To achieve identical PEMWE performance, the optimal pattern saved the 21% anode PGM catalyst compared with the conventional catalyst fully covered electrode. The PGM catalyst could be further reduced by 61% to boost mass activity with no significant performance loss. The results also indicated that the electrode uniformity in PEMWE cells might not be as critical as that in PEM fuel cells. The novel 2D-patterned electrode could effectively reduce PGM catalyst loading, accelerating affordable and large-scale production of hydrogen and other value-added chemicals via electrolysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34978183</pmid><doi>10.1021/acsami.1c20525</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1731-0705</orcidid><orcidid>https://orcid.org/0000-0003-0674-0811</orcidid><orcidid>https://orcid.org/0000-0002-7647-9383</orcidid><orcidid>https://orcid.org/0000000151815363</orcidid><orcidid>https://orcid.org/0000000217310705</orcidid><orcidid>https://orcid.org/0000000306740811</orcidid><orcidid>https://orcid.org/0000000276479383</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.2335-2342
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1843365
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects edge effect
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
mass activity
oxygen evolution reaction
patterned electrode
PEMWE
Surfaces, Interfaces, and Applications
water electrolysis
title Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20and%20Demonstrating%20a%20Novel%20High-Performing%202D-Patterned%20Electrode%20for%20Proton-Exchange%20Membrane%20Water%20Electrolysis%20Devices&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kang,%20Zhenye&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2022-01-12&rft.volume=14&rft.issue=1&rft.spage=2335&rft.epage=2342&rft.pages=2335-2342&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c20525&rft_dat=%3Cproquest_osti_%3E2616288049%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a397t-bc5a561141137a7238ccb005e680987db6ec1bfb0f94ca301df091278221a1c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616288049&rft_id=info:pmid/34978183&rfr_iscdi=true