Loading…
Realization of Electron Antidoping by Modulating the Breathing Distortion in BaBiO3
The recent proposal of antidoping scheme breaks new ground in conceiving conversely functional materials and devices; yet, the few available examples belong to the correlated electron systems. Here, we demonstrate both theoretically and experimentally that the main group oxide BaBiO3 is a model syst...
Saved in:
Published in: | Nano letters 2021-05, Vol.21 (9), p.3981-3988 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recent proposal of antidoping scheme breaks new ground in conceiving conversely functional materials and devices; yet, the few available examples belong to the correlated electron systems. Here, we demonstrate both theoretically and experimentally that the main group oxide BaBiO3 is a model system for antidoping using oxygen vacancies. The first-principles calculations show that the band gap systematically increases due to the strongly enhanced Bi–O breathing distortions away from the vacancies and the annihilation of Bi 6s/O 2p hybridized conduction bands near the vacancies. Our further spectroscopic experiments confirm that the band gap increases systematically with electron doping, with a maximal gap enhancement of ∼75% when the film’s stoichiometry is reduced to BaBiO2.75. These results unambiguously demonstrate the remarkable antidoping effect in a material without strong electron correlations and underscores the importance of bond disproportionation in realizing such an effect. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.1c00750 |