Loading…

Extending C++ for Heterogeneous Quantum-Classical Computing

We present qcor—a language extension to C++ and compiler implementation that enables heterogeneous quantum-classical programming, compilation, and execution in a single-source context. Our work provides a first-of-its-kind C++ compiler enabling high-level quantum kernel (function) expression in a qu...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on quantum computing (Print) 2021-07, Vol.2 (2), p.1-36
Main Authors: Mccaskey, Alexander, Nguyen, Thien, Santana, Anthony, Claudino, Daniel, Kharazi, Tyler, Finkel, Hal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present qcor—a language extension to C++ and compiler implementation that enables heterogeneous quantum-classical programming, compilation, and execution in a single-source context. Our work provides a first-of-its-kind C++ compiler enabling high-level quantum kernel (function) expression in a quantum-language agnostic manner, as well as a hardware-agnostic, retargetable compiler workflow targeting a number of physical and virtual quantum computing backends. qcor leverages novel Clang plugin interfaces and builds upon the XACC system-level quantum programming framework to provide a state-of-the-art integration mechanism for quantum-classical compilation that leverages the best from the community at-large. qcor translates quantum kernels ultimately to the XACC intermediate representation, and provides user-extensible hooks for quantum compilation routines like circuit optimization, analysis, and placement. This work details the overall architecture and compiler workflow for qcor, and provides a number of illuminating programming examples demonstrating its utility for near-term variational tasks, quantum algorithm expression, and feed-forward error correction schemes.
ISSN:2643-6809
2643-6817
DOI:10.1145/3462670